Hydrogels pp 67-78 | Cite as

Hybrid Hydrogels Based on Poly(vinylalcohol)-Chitosan Blends and Relevant CNT Composites

  • Sangram K. Samal
  • Federica Chiellini
  • Cristina Bartoli
  • Elizabeth G. Fernandes
  • Emo Chiellini


The present paper reports on the preparation of hybrid polymeric hydrogels consisting of poly(vinylalcohol) (PVA) and Chitosan (CHI) blends and relevant composites loaded with multiwalled carbon nanotubes (MWCNT). The hydrogels, prepared by the physical freeze-drying method were specifically characterized in the merit of their morphological, thermal and swelling/deswelling behavior. The obtained results indicate that PVA/CHI/MWCNTs hydrogel nanocomposites appear good candidates for biomedical and pharmaceutical applications. The presence of up to 0,5 % MWCNTs in the investigated polymeric hydrogel composites does not negatively affect the biocompatibility of the PVA/CHI hybrid polymeric blends used as continuous matrix.


Hydrogel Composite Hydrogel Sample Polymeric Hydrogel Hydrogel Nanocomposites Continuous Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Tanaka K, Yamabe T, Fukui K (1999) The science and technology of carbon nanotubes. Elsevier, AmsterdamGoogle Scholar
  2. [2]
    Salvetat JP, Kulik A, Bonard JM et al (1999) Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv Mater 2:161–165CrossRefGoogle Scholar
  3. [3]
    Supronowicz PR, Ullman KR, Ajayan PM et al (2001) Cellular/molecular responses of electrically stimulated osteoblasts cultured on novel polymer/carbon nanophase substrates. In: Carbon OI, An International Conference on Carbon, Lexington, KY, United States, July 14–19. University of Kentucky, Center for Applied Energy Research Library, Lexington, pp 1–2Google Scholar
  4. [4]
    Cadek M, Coleman JN, Ryan KP et al (2004) Reinforcement of Polymers with Carbon Nanotubes: The Role of Nanotube Surface Area. Nano Lett 4:353–356CrossRefGoogle Scholar
  5. [5]
    Calvert P (1999) Nanotube composites: A recipe for strength. Nature 399:210–211CrossRefGoogle Scholar
  6. [6]
    Richard C, Balavoine F, Schultz P et al (2003) Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300:775–778CrossRefGoogle Scholar
  7. [7]
    Gao HJ, Kong Y, Cui DX et al (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett 3:471–473CrossRefGoogle Scholar
  8. [8]
    Chen J, Hamon MA, Hu H et al (1998) Solution properties of single-walled carbon nanotubes. Sciente 282:95–98CrossRefGoogle Scholar
  9. [9]
    O’Connell MJ, Boul P, Ericson LM et al (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271CrossRefGoogle Scholar
  10. [10]
    Li H, Wang DQ, Chen HL et al (2003) A novel gelatin-carbon nanotubes hybrid hydrogel. Macromol Biosci 3:720–724CrossRefGoogle Scholar
  11. [11]
    Tong X, Zheng J, Lu Y et al (2007) Swelling and mechanical behaviors of carbon nanotube/poly (vinyl alcohol) hybrid hydrogels. Mater Lett 61:1704–1706CrossRefGoogle Scholar
  12. [12]
    Balavoine F, Schultz P, Richard C et al (1999) Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew Chem. Int Edit 38:1912–1915CrossRefGoogle Scholar
  13. [13]
    Mattson MP, Haddon RC, Rao AM (2000) Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 14:175–182CrossRefGoogle Scholar
  14. [14]
    Yildirim ED, Yin X, Ko FK et al (2006) Evaluation of 3D Hybrid Alginate/Single Wall Carbon Nanotube Tissue Scaffolds in Terms of Process and Cytocompatibility. Bioengineering Conference, Proceedings of the IEEE 32nd Annual Northeast, 01-02 April, pp 5–6Google Scholar
  15. [15]
    Abarrategi A, Gutierrez MC, Moreno-Vicente C et al (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29:94–102CrossRefGoogle Scholar
  16. [16]
    Cadek M, Coleman JN, Barron V et al (2002) Morphological and mechanical properties of carbon-nanotube-reinforcedsemicrystalline and amorphous polymer composites. Appl Phys Lett 81:5123–5125CrossRefGoogle Scholar
  17. [17]
    Gong HP, Zhong YH, Li JC et al (2000) Studies on nerve cell affinity of chitosan-derived materials. J Biomed Mater Res 52:285–295CrossRefGoogle Scholar
  18. [18]
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRefGoogle Scholar
  19. [19]
    Zhao L, Mitomo H, Zhai ML et al (2003) Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohyd Polym 53:439–446CrossRefGoogle Scholar
  20. [20]
    Fernandes EG, Krauser S, Samour CM, Chiellini E (2000) Symmetric block oligomers. Gelation characteristics by DSC. J Therm Anal Cal 61:551–564CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 2009

Authors and Affiliations

  • Sangram K. Samal
    • 1
  • Federica Chiellini
    • 1
  • Cristina Bartoli
    • 1
  • Elizabeth G. Fernandes
    • 1
  • Emo Chiellini
    • 1
  1. 1.Department of Chemistry & Industrial ChemistryUniversity of PisaItaly

Personalised recommendations