Hydrogels pp 53-65 | Cite as

Stereocomplexed PEG-PLA Hydrogels

  • Christine Hiemstra
  • Zhiyuan Zhong
  • Pieter J. Dijkstra
  • Jan Feijen


In this paper we give an overview of our studies on stereocomplexed hydrogels upon mixing aqueous solutions of enantiomeric linear poly (ethylene glycol)-poly(L-lactide) triblock (PEG-PLA) copolymers and eight-arm (PEG-PLA) star block copolymers and methacrylate functionalized PEG-PLA star block copolymers [1, 2, 3]. Stereocomplexation and photopolymerization were combined and enhanced the stability of the hydrogels. For all polymers, the critical gel concentrations of the mixed enantiomer solutions were considerably lower compared to polymer solutions containing only the single enantiomer. The gel-sol transition temperatures were increased and gel regions were expanded due to stereocomplexation.


Block Copolymer Triblock Copolymer Amphiphilic Block Copolymer Hydrophobic Block Hydrogel Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hiemstra C, Zhong ZY, Dijkstra PJ, Feijen J (2005) Stereocomplex mediated gelation of PEG-(PLA)2 and PEG-(PLA)8 block copolymers. Macromol Symp 224:119–131CrossRefGoogle Scholar
  2. [2]
    Hiemstra C, Zhong ZY, Li L, Dijkstra PJ, Feijen J (2006) In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers. Biomacromolecules 7:2790–2795CrossRefGoogle Scholar
  3. [3]
    Hiemstra C, Wouters MEL, Zhong ZY, Feijen J (2007) Rapidly in situ forming PEG-PLA hydrogels prepared by combined stereocomplexation and photocrosslinking. J Am Chem Soc 129 32:9918–9926CrossRefGoogle Scholar
  4. [4]
    Wichterle O, Lim D, Dreifus M (1961) On the problem of contact lenses. Cesk Oftalmol 17:70–75Google Scholar
  5. [5]
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv Mater 18:1345–1360CrossRefGoogle Scholar
  6. [6]
    Kashyap N, Kumar N, Kumar M (2005) Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst 22:107–149CrossRefGoogle Scholar
  7. [7]
    Peppas N, Bures P, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRefGoogle Scholar
  8. [8]
    Malmsten M (2006) Soft drug delivery systems, Soft Matter 2:760–769CrossRefGoogle Scholar
  9. [9]
    Hubbell JA (2003) Materials as morphogenetic guides in tissue engineering. Curr Opin Biotech 14:551–558CrossRefGoogle Scholar
  10. [10]
    Nerem RM (2006) Tissue engineering: The hope, the hype, and the future. Tissue Eng 12:1143–1150CrossRefGoogle Scholar
  11. [11]
    Lavik E, Langer R (2004) Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol 65:1–8CrossRefGoogle Scholar
  12. [12]
    Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36CrossRefGoogle Scholar
  13. [13]
    Benoit DSW, Durney AR, Anseth KS (2006) Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation. Tissue Eng 12:1663–1673CrossRefGoogle Scholar
  14. [14]
    Patel PN, Gobin AS, West JL, Patrick CW (2005) Polyethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng 11:1498–1505CrossRefGoogle Scholar
  15. [15]
    Bae SJ, Joo MK, Jeong Y, Kim SW, Lee WK, Sohn YS, Jeong B (2006) Gelation behavior of poly(ethylene glycol) and polycaprolactone triblock and multiblock copolymer aqueous solutions. Macromolecules 39:4873–4879CrossRefGoogle Scholar
  16. [16]
    Shim WS, Kim JH, Park H, Kim K, Kwon IC, Lee DS (2006) Biodegradability and biocompatibility of a pH-and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) block copolymer. Biomaterials 27:5178–5185CrossRefGoogle Scholar
  17. [17]
    Lee BH, West B, McLemore R, Pauken C, Vernon BL (2006) In-situ injectable physically and chemically gelling NIPAAm-based copolymer system for embolization. Biomacromolecules 7:2059–2064CrossRefGoogle Scholar
  18. [18]
    Liu YY, Shao YH, Lu J (2006) Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels. Biomaterials 27:4016–4024CrossRefGoogle Scholar
  19. [19]
    Xu FJ, Kang ET, Neoh KG (2006) pH-and temperature-responsive hydrogels from crosslinked triblock copolymers prepared via consecutive atom transfer radical polymerizations. Biomaterials 27:2787–2797CrossRefGoogle Scholar
  20. [20]
    Betre H, Setton LA, Meyer DE, Chilkoti A (2002) Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. Biomacromolecules. 3:910–916CrossRefGoogle Scholar
  21. [21]
    Dang JM, Sun DDN, Shin-Ya Y, Sieber AN, Kostuik JP, Leong KW (2006) Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Biomaterials 27:406–418CrossRefGoogle Scholar
  22. [22]
    Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang MQ (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Controlled Release 103:609–624CrossRefGoogle Scholar
  23. [23]
    Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161CrossRefGoogle Scholar
  24. [24]
    Lee BH, Lee YM, Sohn YS, Song SC (2002) A thermosensitive poly(organophosphazene) gel. Macromolecules 35:3876–3879CrossRefGoogle Scholar
  25. [25]
    Seong JY, Jun YJ, Jeong B, Sohn YS (2005) New thermogelling poly (organophosphazenes) with methoxypoly(ethylene glycol) and oligopeptide as side groups. Polymer 46:5075–5081CrossRefGoogle Scholar
  26. [26]
    Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84CrossRefGoogle Scholar
  27. [27]
    Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21:117–132CrossRefGoogle Scholar
  28. [28]
    De Jong SJ, van Nostrum CF, Kroon-Batenburg LMJ, Kettenes-van den Bosch JJ, Hennink WE (2002) Oligolactate-grafted dextran hydrogels: Detection of stereocomplex crosslinks by X-ray diffraction. J Appl Polym Sci 86:289–293CrossRefGoogle Scholar
  29. [29]
    De Jong SJ, De Smedt SC, Wahls MWC, Demeester J, Kettenes-van den Bosch JJ, Hennink WE (2000) Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules 33:3680–3686CrossRefGoogle Scholar
  30. [30]
    Li S, Vert M (2003) Synthesis, characterization, and stereocomplexation-induced gelation of block copolymers prepared by ring-opening polymerization of L(D)-lactide in the presence of poly(ethylene glycol). Macromolecules 36:8008–8014CrossRefGoogle Scholar
  31. [31]
    Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314CrossRefGoogle Scholar
  32. [32]
    Zhu J, Beamish J, Tang C, Kottke-Marchant K, Marcant R (2006) Extracellular Matrix-like Cell-Adhesive Hydrogels from RGD-Containing Poly(ethylene glycol) Diacrylate. Macromolecules 39:1305–1307CrossRefGoogle Scholar
  33. [33]
    Elisseeff J, Anseth K, Sims D, Mcintosh W, Randolph M, Langer R (1999) Transdermal photopolymerization for minimally invasive implantation. PNAS 96:3104–3107CrossRefGoogle Scholar
  34. [34]
    Baroli B (2006) Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications. J Chem Technol Biotechnol 81:491–499CrossRefGoogle Scholar
  35. [35]
    Sawhney AS, Pathak CP, Hubbell JA (1993) Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers. Macromolecules 26:581–587CrossRefGoogle Scholar
  36. [36]
    Bryant SJ, Bender RJ, Durand KL, Anseth KS (2004) Encapsulating Chondrocytes in degrading PEG hydrogels with high modulus: Engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol Bioeng 86:747–755CrossRefGoogle Scholar
  37. [37]
    Elisseeff J, Anseth KS, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R (1999) Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 104:1014–1022CrossRefGoogle Scholar
  38. [38]
    Stevels WM, Ankone MJA, Dijkstra PJ, Feijen J (1995) Stereocomplex formation in ABA triblock copolymers of poly(lactide)(A) and poly(ethylene-glycol)(B). Macromol Chem Phys 196:3687–3694CrossRefGoogle Scholar
  39. [39]
    Jeong B, Lee D, Wu CH, Bae YH, Kim SW (1999) Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. J Polym Sci Polym Chem 37:751–760CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 2009

Authors and Affiliations

  • Christine Hiemstra
    • 1
  • Zhiyuan Zhong
    • 1
  • Pieter J. Dijkstra
    • 1
  • Jan Feijen
    • 1
  1. 1.Department or Institute: Department of Science and TechnologyUniversity of TwenteNetherlands

Personalised recommendations