Advertisement

Hydrogels pp 9-20 | Cite as

Structure-Property Relationships in Hydrogels

  • Assunta Borzacchiello
  • Luigi Ambrosio

Abstract

The structure and properties of a specific hydrogel are extremely important in selecting which materials are suitable for the specific application. Knowledge of the structure-property relationship is, then, fundamental to tailor hydrogel properties to their final goal.

In this chapter, the theory describing the mechanical, both static and dynamic, and the swelling behavior of hydrogels is examined and the relationship between these properties and structural parameters is discussed.

Keywords

Hyaluronic Acid Rubber Elasticity Mechanical Spectrum Polymer Volume Fraction Hyaluronic Acid Hydrogel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Peppas NA, Huang Y et al (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 02:9–29CrossRefGoogle Scholar
  2. [2]
    Peppas NA (1986) Hydrogels in medicine and pharmacy. CRC Press, Boca Raton, Florida.Google Scholar
  3. [3]
    Sperling LH (1981) Interpenetrating polymer Networks. Plenum Press, New YorkGoogle Scholar
  4. [4]
    Ratner BD, Hoffman AS (1976) Synthetic hydrogels for biomedical applications. In: Andrade JD (ed) Hydrogels for medical and related applications. ACS symposium series, 31, ACS WashingtonGoogle Scholar
  5. [5]
    Park H, Park K, Shalaby Waleed SW (1993) Biodegradable Hydrogels for Drug Delivery. CRC Press, Boca Raton, FloridaGoogle Scholar
  6. [6]
    Borzacchiello A, Ambrosio L, Netti PA, Nicolais L (2004 ) Rheology of biological fluids and their substitute. In: Yaszemski MJ, Trantolo DJ, Lewandroski KU, Hasirci V, Altobelli DE, Wise DL (ed), Tissue Engineering and Novel Drug Delivery Systems. Marcel Dekker Inc, New YorkGoogle Scholar
  7. [7]
    Ross-Murphy SB (1991) Physical gelation of synthetic and biological macromolecules. In: De Rossi D, Kajiwara K, Osada Y and Yamauchi A (ed) Polymer Gels. Fundamentals and Biomedical Applications. Plenum Press, New YorkGoogle Scholar
  8. [8]
    Clark AH, Ross-Murphy SB (1987) Structural and mechanical properties of biopolymers gels. Adv Pol Sc 83:61Google Scholar
  9. [9]
    Brannon-Peppas L (1994) Preparation and characterization of cross-linked hydrophilic networks. In: Superabsorbent Polymers: Science and Technology ACS Symp. Ser. 573, American Chemical Society, Washington, DCGoogle Scholar
  10. [10]
    Peppas NA, Mikos AG (1986) Preparation methods and structure of hydrogels. In: Peppas NA (ed) Hydrogels in Medicine and Pharmacy, Vols 1,2. CRC press Boca Raton, FloridaGoogle Scholar
  11. [11]
    Peppas NA, Barr-Howell BD (1986) Characterization of the cross-linked structure of hydrogels. In: Peppas NA (ed) Hydrogels in Medicine and Pharmacy, Vols 1,2. CRC press Boca Raton, FloridaGoogle Scholar
  12. [12]
    Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 02:9–29CrossRefGoogle Scholar
  13. [13]
    Anseth KS et al. (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657CrossRefGoogle Scholar
  14. [14]
    Ferry JD (1970) Viscoelastic Properties of Polymers. Wiley, New YorkGoogle Scholar
  15. [15]
    Ambrosio L, Borzacchiello A, Netti PA, Nicolais L (1998) Rheological properties of hyaluronic acid based solutions. Polymeric Materials Science and Engineering 79: 244–245Google Scholar
  16. [16]
    Ambrosio L, Borzacchiello A., Netti PA, Nicolais L (1999) Rheological study on Hyaluronic acid and its derivatives solutions. J. of Macromolecular Science-Pure and Applied Chemistry A36(7 and 8):991–1000Google Scholar
  17. [17]
    Borzacchiello A, Netti PA, Ambrosio L, Nicolais L (2000) Hyaluronic acid derivatives mimic the rheological properties of vitreous body. In: Abatangelo G, Weigel PH (ed) New Frontiers in Medical Sciences: Redefining Hyaluronan. Elsevier, Amsterdam, pp 195–202Google Scholar
  18. [18]
    Borzacchiello A, Ambrosio L (2001) Network formation of low molecular weight hyaluronic acid derivatives. Journal of Biomaterials Science Polymer Edition 12(3):307–316CrossRefGoogle Scholar
  19. [19]
    Maltese A, Bucolo C, Maugeri F, Borzacchiello A, Mayol L, Nicolais L, Ambrosio L (2006) Novel polysaccharides based viscoelastic formulations for ophthalmic surgery: rheological characterization. Biomaterials 27:5134–5142CrossRefGoogle Scholar
  20. [20]
    Barbucci R, Ruoppoli R, Borzacchiello A, Ambrosio L (2000) Synthesis, chemical and rheological characterisation of new hyaluronic based hydrogels. Journal of Biomaterials Science Polymer Edition 11(4):383–399CrossRefGoogle Scholar
  21. [21]
    Borzacchiello A, Ambrosio L, Netti PA, Nicolais L, Peniche C, Gallardo A, San Roman J (2001) Chitosan-based hydrogels: Synthesis and Characterization. J. of Materials Science: Materials in Medicine 12:861–864CrossRefGoogle Scholar
  22. [22]
    Barbucci R, Lamponi S, Borzacchiello A, Ambrosio L, Fini M, Torricelli P, Giardino R (2002) Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 23(13): 4503–4513CrossRefGoogle Scholar
  23. [23]
    Leone G, Barbucci R, Borzacchiello A, Ambrosio L, Netti PA, Migliaresi C (2004) Preparation and physico-chemical characterisation of microporous polysaccharide hydrogels. J Mater Sci Mater in Med 15(4):463–467CrossRefGoogle Scholar
  24. [24]
    Borzacchiello A, Mayol L, Ramires PA, Di Bartolo C, Pastorello A, Ambrosio L, Milella E (2007) Structural and rheological characterization of hyaluronic acid-based scaffolds for adipose tissue engineering. Biomaterials 28:4399–4408CrossRefGoogle Scholar
  25. [25]
    D’Errico G, De Lellis M, Mangiapia G, Ortona O, Fusco S, Borzacchiello A, Ambrosio L (2008) Structural and mechanical properties of UV photocrosslinked poly(N-vinyl-2-pyrrolidone) hydrogels. Biomacromolecules 9(1): 231–240CrossRefGoogle Scholar
  26. [26]
    Xuejun Xin, Borzacchiello A, Netti PA, Ambrosio L, Nicolais L (2004) Hyaluronic Acid Based Semi Interpenetrating Materials. J Biomater Sci Polymer Edn 15:1223–1236CrossRefGoogle Scholar
  27. [27]
    Battista S, Guarnieri D, Borselli C, Zeppetelli S, Borzacchiello A, Mayol L, Gerbasio D, Keene DR, Ambrosio L, Netti PA (2005) The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials 26(31):6194–6207CrossRefGoogle Scholar
  28. [28]
    Guarnirei D, Battista S, Borzacchiello A, Mayol L, De Rosa E, Kene DR, Muscariello L, Barbarisi A, Netti PA (2007) Effect of fibronectin and laminin on structural, mechanical and transoprt properties of 3D collageneous network. Journal of Materials Science: Materials in Medicine 18(2): 245–253CrossRefGoogle Scholar
  29. [29]
    Lapasin R, Pricl S (1995) Rheology of industrial polysaccharides Theory and applications. Blackie Academic and Professional, LondonGoogle Scholar
  30. [30]
    Aklonis JJ, Mac Knight WJ (1983) Introduction to polymer viscoelasticity. Wiley, New YorkGoogle Scholar
  31. [31]
    Ward IM, Hadley PW (1993) An introduction to the mechanical properties of solid polymers. Wiley, New YorkGoogle Scholar
  32. [32]
    Sperling LH ( 1986) Introduction to physical polymer science. Wiley, New YorkGoogle Scholar
  33. [33]
    De Smedt SC, Dekeyser P, Ribitsch V, Lauwers A, Demeester (1993) Viscoelastic and transient network properties of hyaluronic acid as a function of the concentration. Biorheology 30:631Google Scholar
  34. [34]
    Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, New YorkGoogle Scholar
  35. [35]
    Schurz J (1991) Rheology of polymer solutions of the network type. Prog Polym Sci 16:1–53CrossRefGoogle Scholar
  36. [36]
    Flory PJ, Rehner BD. (1943). Statistical mechanics of cross-linked polymer networks. J Chem Phys 11:521–526CrossRefGoogle Scholar
  37. [37]
    Peppas NA, Merrill EW (1976). PVA hydrogels: reinforcement of radiation-crosslinked networks by crystallization. J Polym Sci Polym Chem 14:441–457Google Scholar
  38. [38]
    Ricka J, Tanaka T (1984) Swelling of ionic gels: quantitative performance of the Donnan theory. Macromolecules 17:2916–2921CrossRefGoogle Scholar
  39. [39]
    Tanaka T (1979) Phase transition in gels and a single polymer. Polymer 20:1404–1412CrossRefGoogle Scholar
  40. [40]
    Brannon-Peppas L, Peppas NA (1990) The equilibrium swelling behavior of porous and non-porous hydrogels. In: Brannon-Peppas L, Harland RS (ed) Absorbent polymer technology. Elsevier, AmsterdamGoogle Scholar
  41. [41]
    Canal T, Peppas NA (1989) Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J Biomed. Mater Res 23:1183–1193CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 2009

Authors and Affiliations

  • Assunta Borzacchiello
    • 1
  • Luigi Ambrosio
    • 1
  1. 1.Institute of Composite & Biomedical Materials National Research CouncilNaplesItaly

Personalised recommendations