Skip to main content

On-Off Switching Properties of ultra thin Intelligent Temperature-Responsive Polymer Modified Surface

  • Chapter
Book cover Hydrogels
  • 2514 Accesses

Abstract

Intelligent temperature-responsive polymers are currently utilized in a variety of fields within engineering and medicine. Particularly, special attention has been paid to the temperature-responsive polymer, poly(N-isopropylacrylamide) (PIPAAm). We have investigated properties of PIAAm grafted surfaces and applied the surfaces to novel chromatography matrix and novel cell culture surfaces. In this chapter, we describe the features of PIPAAm grafted surfaces in response to external temperature stimuli. We discuss the features in terms of the degree of the mobility of the grafted polymer chains as well as hydration and dehydration of the chains by temperature change. For culturing cells on PIPAAm grafted surfaces, nanometer-thickness of the grafted PIPAAm layer plays a crucial role in cell adhesion/attachment behavior. Furthermore, we introduce a new concept for tissue engineering, utilizing temperature-responsive polymer grafted tissue culture dishes, and summarize the development of advanced temperature-responsive cell culture surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  2. Takei YG, Aoki T et al (1994) Dynamic contact angle measurement of temperature-responsive surface properties for poly(N-isopropylacrylamide) grafted surfaces. Macromolecules 27:6163–6166

    Article  CAS  Google Scholar 

  3. Yakushiji T, Sakai K et al (1998) Graft architecture effects on thermoresponsive wettability changes of poly(N-isopropylacrylamide) surfaces. Langmuir 14:4657–4662

    Article  CAS  Google Scholar 

  4. Kanazawa H, Yamamoto K et al (1996) Temperature-responsive chromatography using poly(N-isopropylacrylamide)-modified silica. Anal Chem 68:100–105

    Article  CAS  Google Scholar 

  5. Kanazawa H, Kashiwase Y et al (1997) Temperature-responsive liquid chromatography. 2. effects of hydrophobic groups in N-isopropylacrylamide copolymer-modified silica. Anal Chem 69:823–830

    Article  CAS  Google Scholar 

  6. Kanazawa H, Sunamoto T et al (2000) Temperature-responsive chromatographic separation of amino acid phenylthiohydantoins using aqueous media as the mobile phase. Anal Chem 72:5961–5966

    Article  CAS  Google Scholar 

  7. Kanazawa H, Kashiwase Y et al (1997) Analysis of peptides and proteins by temperature-responsive chromatographic system using N-isopropylacrylamide polymer-modified column. J Pharm Biomed Anal 15:1545–1550

    Article  CAS  Google Scholar 

  8. Yamamoto K, Kanazawa H et al (2000) Temperature-responsive chromatographic separation of bisphenol A with water as a sole mobile phase. Environ Sci 7:47–56

    CAS  Google Scholar 

  9. Kanazawa H (2000) Thermally responsive chromatographic materials using functional polymers. J Sep Sci 30:1646–1656

    Article  Google Scholar 

  10. Yamada N, Okano T et al (1990) Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromol Chem Rapid Commun 11:571–576

    Article  CAS  Google Scholar 

  11. Okano T, Yamada N et al (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27:1243–1251

    Article  CAS  Google Scholar 

  12. Kushida A, Yamato M et al (1999) Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J Biomed Mater Res 45:355–362

    Article  CAS  Google Scholar 

  13. Yamato M, Konno C et al (2000) Release of adsorbed fibronectin from temperature-responsive culture surfaces requires cellular activity. Biomaterials 21:981–986

    Article  CAS  Google Scholar 

  14. Shimizu T, Yamato M et al (2003) Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24:2309–2316

    Article  CAS  Google Scholar 

  15. Yang J, Yamato M et al (2006) Corneal epithelial stem cell delivery using cell sheet engineering: not lost in transplantation. J Drug Target 14:471–482

    Article  CAS  Google Scholar 

  16. Geweher M, Nakamyra K et al (1992) Gel permutation chromatography using porous glass beads modified with temperature-rsponsive polymers. Makromol Chem 193:249–256

    Article  Google Scholar 

  17. Hosoya K, Sawada E et al (1995) Temperature-controlled high-performance liquid chromatography using a uniformly sized temperature-responsive polymer-based packing material. Anal Chem 67:1907–1911

    Article  CAS  Google Scholar 

  18. Kikuchi A, Okano T (2002) Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Progress in Polymer Science 27:1165–1193

    Article  CAS  Google Scholar 

  19. Tamada Y, Ikada Y (1994) Fibroblast growth on polymer surfaces and biosynthesis of collagen. J Biomed Mater Res 28:783–789

    Article  CAS  Google Scholar 

  20. Okano T, Yamada N et al (1995) Mechanism of cell detachment from temperature-modulated hydrophilic-hydrophobic polymer surfaces. Biomaterials 16: 297–303

    Article  CAS  Google Scholar 

  21. Kikuchi A, Okano T (2005) Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J Control Release 101(1–3):69–84

    Article  CAS  Google Scholar 

  22. Kikuchi A, Okuhara M et al (1998) Two-dimensional manipulation of confluently cultured vascular endothelial cells using temperature-responsive poly(N-isopropylacrylamide)-grafted surfaces. J Biomater Sci Polym Ed 9:1331–1348

    Article  CAS  Google Scholar 

  23. Kushida A, Yamato M et al (1999) Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J Biomed Mater Res 45:355–362

    Article  CAS  Google Scholar 

  24. Hirose M, Kwon OH et al (2000) Creation of designed shape cell sheets that are noninvasively harvested and moved onto another surface. Biomacromolecules 1:377–381

    Article  CAS  Google Scholar 

  25. Tang Z, Kikuchi A et al (2007) Novel cell sheet carriers using polyion complex gel modified membranes for tissue engineering technology for cell sheet manipulation and transplantation. React Func Polym 67:1388–1397

    Article  CAS  Google Scholar 

  26. Yamato M, Utsumi M et al (2001) Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng 7:473–480

    Article  CAS  Google Scholar 

  27. Nishida K, Yamato M et al (2004) Corneal ceconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196

    Article  CAS  Google Scholar 

  28. Shiroyanagi Y, Yamato M et al (2004) Urothelium regeneration using viable cultured urothelial cell sheets grafted on demucosalized gastric flaps. BJU Int 93:1069–1075

    Article  CAS  Google Scholar 

  29. Shimizu T, Yamato M et al (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90:e40–e48

    Article  CAS  Google Scholar 

  30. Nandkumar MA, Yamato M et al (2002) Two-dimensional cell sheet manipulation of heterotypically co-cultured lung cells utilizing temperature-responsive culture dishes results in long-term maintenance of differentiated epithelial cell functions. Biomaterials 23:1121–1130

    Article  CAS  Google Scholar 

  31. Akiyama Y, Kikuchi AM et al (2004) Ultra thin poly(N-isopropylacrylamide) grafted layer on poly(styrene) surfaces for cell adhesion/detachment control. Langmuir 20:5506–5511

    Article  CAS  Google Scholar 

  32. Uchida K, Sakai K et al (2000) Temperature-dependent modulation of blood platelet movement and morphology on poly(N-isopropylacrylamide)-grafted surfaces. Biomaterials 21:923–929

    Article  CAS  Google Scholar 

  33. Akiyama Y, Kushida A et al (2007) Surface characterization of poly(N-isopropylacrylamide) grafted tissue culture polystyrene by electron beam irradiation, using atomic force microscopy, and x-ray photoelectron spectroscopy. J Nanosci Nanotechn 7:796–802

    Article  CAS  Google Scholar 

  34. Fukumori K, Akiyama Y et al (2008) Temperature-responsive glass coverslips with an ultrathin poly(N-isopropylacrylamide) layer. Acta Biomaterialia doi: 10.1016/j.actbio. 2008.06.018

    Google Scholar 

  35. Kwon OH, Kikuchi A et al (2000) Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. J Biomed Mater Res 50:82–89

    Article  CAS  Google Scholar 

  36. Kwon OH, Kikuchi A et al (2003) Accelerated cell sheet recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes. Biomaterials 24:1223–1232

    Article  Google Scholar 

  37. Lee JH, Lee SJ et al (1999) Interaction of fibroblasts on polycarbonate membrane surfaces with different micropore size and hydrophilicity. J Biomater Sci Polym 10:283–294

    Article  CAS  Google Scholar 

  38. Kaneko Y, Nakamura S et al (1998) Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules 31:6099–6105

    Article  CAS  Google Scholar 

  39. Ebara M, Yamato M et al (2003) Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules 4:344–349

    Article  CAS  Google Scholar 

  40. Bae YH, Okano T et al (1990) Temperature dependence of swelling of crosslinked poly(N,N-alkyl substituted acrylamides) in water. J Polym Sci Part B Polym Phys 28:923–936

    Article  CAS  Google Scholar 

  41. Feil H, Bae YH et al (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500

    Article  CAS  Google Scholar 

  42. Tsuda Y, Kikuchi A et al (2004) Control of cell adhesion and detachment using temperature and thermoresponsive copolymer grafted culture surfaces. J Biomed Mater Res 69A:70–78

    Article  CAS  Google Scholar 

  43. Bhatia S, Yarmush M et al (1997) Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J Biomed Mater Res 34:189–99

    Article  CAS  Google Scholar 

  44. Tsuda Y, Kikuchi A et al (2005) The use of patterned dual thermoresponsive surfaces for collective recovery as co-cultured cell sheets. Biomaterials 26:1885–1893

    Article  CAS  Google Scholar 

  45. Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373:49–52

    Google Scholar 

  46. Aoyagi T, Ebara M et al (2000) Novel bifunctional polymer with reactivity and temperature sensitivity. J Biomater Sci Polym Edn 11:101–110

    Article  CAS  Google Scholar 

  47. Ebara M, Aoyagi T et al (2000) Introducing reactive carboxyl side chains retains phase transition temperature sensitivity in N-isopropylacrylamide copolymer gels. Macromolecules 33:8312–8316

    Article  CAS  Google Scholar 

  48. Ebara M, Yamato M et al (2004) Temperature-responsive cell culture surfaces enable “on-off” affinity control between cell integrins and RGDS ligands. Biomacromolecules 5:505–510

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia, Milan

About this chapter

Cite this chapter

Akiyama, Y., Okano, T. (2009). On-Off Switching Properties of ultra thin Intelligent Temperature-Responsive Polymer Modified Surface. In: Hydrogels. Springer, Milano. https://doi.org/10.1007/978-88-470-1104-5_14

Download citation

Publish with us

Policies and ethics