Hydrogels pp 157-177 | Cite as

Novel pH/Temperature-Sensitive Hydrogels Based on Poly(β-Amino Ester) for Controlled Protein Delivery

  • Dai Phu Huynh
  • Chaoliang He
  • Doo Sung Lee


The concept of this research was to use poly(β-amino ester) (PAE) as a bi-functional group for synthesis of the novel stimuli-sensitive injectable hydrogels for controlled drug/protein delivery. Firstly, PAE was used as a pH-sensitive moiety to conjugate with the temperature-sensitive biodegradable triblock copolymer of poly(ethylene glycol)-poly(ε-caprolactone)(PCL-PEG-PCL) or poly(ethylene glycol)-poly(ε-caprolactone-co-D,L-lactide) (PACL-PEG-PCLA). Secondly, the cationic nature of PAE was used as the second function to make ionic complexes with anionic biomolecules loaded onto the hydrogel such as insulin. As a result, the release of the drug/protein from the hydrogel device can be controlled by the degradation of the copolymer.


Block Copolymer Insulin Release Triblock Copolymer Copolymer Solution Phosphate Buffer Saline Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Tyagi P (2002) Insulin delivery systems: present trends and the future direction. Indian J Pharmacol 34:379–389Google Scholar
  2. [2]
    Qiao M, Chen D, Ma X, Liu Y (2005) Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm 294:103–112CrossRefGoogle Scholar
  3. [3]
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliver Rev 53:3–12CrossRefGoogle Scholar
  4. [4]
    Cohn D, Stern S, Gonzalez MF, Epstein J (2002) Biodegradable poly (ethylene oxide)/poly(e-caprolactone) multiblock copolymer. J Biomed Mater Res 59:273–281CrossRefGoogle Scholar
  5. [5]
    Zhao SP, Zhang LM, Ma D (2006) Supramolecular hydrogels induced rapidly by inclusion complexation of Poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) block copolymers with a-cyclodextrin in aqueous solutions. J Phys Chem B 110:12225–12229CrossRefGoogle Scholar
  6. [6]
    Huang X, Lowe TL (2005) Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs. Biomacromolecules 6:2131–2139CrossRefGoogle Scholar
  7. [7]
    Yang YW, Yang Z, Zhou ZK, Attwood D, Booth C (1996) Association of triblock copolymers of ethylene oxide and butylene oxide in aqueous solution: A study of BnEmBn copolymers. Macromolecules 29:670–680CrossRefGoogle Scholar
  8. [8]
    Choi SW, Choi SY, Jeong BS, Kim W, Lee DS (1999) Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymer. J Polym Sci Part A: Poly Chem 37:2207–2218CrossRefGoogle Scholar
  9. [9]
    Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliver Rev 54:37–51CrossRefGoogle Scholar
  10. [10]
    Tanaka T, Fillmore DS, Sun T, Nishio I, Swislow G, Shah A (1980) Phase transitions in ionic gels. Phys Rev Lett 45:1636–1639CrossRefGoogle Scholar
  11. [11]
    Amiya T, Hirokawa T, Hirose Y, Li Y, Tanaka T (1987) Reentrant phase transition of N-isopropylacrylamide gels in mixed solvent. J Chem Phys 86:2375–2379CrossRefGoogle Scholar
  12. [12]
    Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transition over a wide range of pH. Nature 373:49–52CrossRefGoogle Scholar
  13. [13]
    Yoshida R, Uchida K, Taneko T, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comptype grafted hydrogels with rapid de-swelling response to temperature range. Nature 374:240–242CrossRefGoogle Scholar
  14. [14]
    Tanaka T, Nishio I, Sun ST, Nishio SU (1982) Collapse of gels in an electric field. Science 218:467–469CrossRefGoogle Scholar
  15. [15]
    Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244CrossRefGoogle Scholar
  16. [16]
    Irie M (1993) Stimuli-responsive poly(N-isopropylacrylamide) Photo-and chemical-induced phase transitions. Adv Polym Sci 110:49–65CrossRefGoogle Scholar
  17. [17]
    Suzuki A, Tanaka T (1990) Phase transition in polymer gel induced by visible light. Nature 346:345–347CrossRefGoogle Scholar
  18. [18]
    Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Delivery Rev 53:321–339CrossRefGoogle Scholar
  19. [19]
    Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862CrossRefGoogle Scholar
  20. [20]
    Shim MS, Lee HT, Shim WS, Park I, Lee H, Chang TS, Kim W, Lee DS (2002) Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. J Biomed Mater Res 61:188CrossRefGoogle Scholar
  21. [21]
    Huynh DP, Shim WS, Kim JH, Lee DS (2006) pH/temperature sensitive polyethylene glycol)-based biodegradable polyester block copolymer hydrogels. Polymer 47:7918–7926CrossRefGoogle Scholar
  22. [22]
    Shim WS, Yoo JS, Bae YH, Lee DS (2005) Novel Injectable pH and Temperature Sensitive Block Copolymer Hydrogel. Biomacromolecules 6:2930–2934CrossRefGoogle Scholar
  23. [23]
    Akinc A, Anderson DG, Lynn DM, Langer R (2003) Synthesis of Poly(β-amino ester)s optimized for highly effective gene delivery. Bioconjugate Chem 14:979–988CrossRefGoogle Scholar
  24. [24]
    Potineni A, Lynn DM, Langer R, Amiji MM (2003) Poly (ethylene oxide)-Modified Poly(β-amino ester) Nanoparticles: A Long-Circulating pH-Sensitive Biodegradable System for Paclitaxel Delivery. J Control Release 86:223–234CrossRefGoogle Scholar
  25. [25]
    Berry D, Lynn DM, Sasisekharan R, Langer R (2004) Internalized heparin using poly(b-amino ester)s promote cellular uptake of heparin and cancer cell death. Chem Biology 11:487–798CrossRefGoogle Scholar
  26. [26]
    Little SR, Lynn DM, Ge Q, Anderson DG, Puram S V, Chen J, Eisen H, Langer R (2004) Poly(β-amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc Natl Acad Sci USA 101:9534–9539CrossRefGoogle Scholar
  27. [27]
    Ferruti P, Bianchi S, Ranucci E, Chiellini F, Caruso V (2005) Novel poly(amido amine)-based hydrogels as scaffolds for tissue engineering. Macromol Biosci 5:613–622CrossRefGoogle Scholar
  28. [28]
    Kim MS, Lee DS, Choi EK, Park HJ, Kim JS (2005) Modulation of poly(β-amino ester) pH-sensitive polymers by molecular weight control. Macromol Res 13:147–151Google Scholar
  29. [29]
    Jeong BM, Lee DS, Shon, J, Bae YH, Kim SW (1999) Thermorevirsible gelation of poly(ethylene oxide) biodegradable polyester block copolymer II. J Polym Sci Part A 37:751–760CrossRefGoogle Scholar
  30. [30]
    Jeong BM, Bae YH, Kim SW (1999) Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solution. Macromolecules 32:7064–7069Google Scholar
  31. [31]
    Stevens MG, Olsen S (1993) Comparative analysis of using MTT and XTT in colorimetric assays for quantitating bovine neutrophil bactericidal activity. J Immunol Methods 157:225–231CrossRefGoogle Scholar
  32. [32]
    Huynh DP, Nguyen MK, Pi BS, Kim MS, Chae SY, Lee KC, Kim BS, Lee SW, Lee DS (2008) Functionalized injectable hydrogels for controlled insulin release. Biomaterials 29:2527–2534CrossRefGoogle Scholar
  33. [33]
    Anderson DG, Lynn DM, Langer R (2003) Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angrew Chem Int Ed 42:3153–3158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 2009

Authors and Affiliations

  • Dai Phu Huynh
    • 1
  • Chaoliang He
    • 1
  • Doo Sung Lee
    • 1
  1. 1.Department of Polymer Science and EngineeringSungKyunKwan UniversitySuwon, KyungkiKorea

Personalised recommendations