Hydrogels pp 121-140 | Cite as

Synthesis of Stimuli-Sensitive Hydrogels in the μm and sub-μm Range by Radiation Techniques and their Application

  • Karl-Friedrich Arndt
  • Andreas Richter
  • Ingolf Mönch


The macroscopic material properties (elasticity, volume in swollen state) of smart stimuli-sensitive hydrogels show a strong dependence on the properties of an aqueous environment (swelling agent). This behavior can be used for sensors or force-generating elements (actuators). Radiochemistry offers the possibility to synthesize smart gels in a wide range of dimensions. As an example of temperature-sensitive polymers we demonstrate the advantages of a radiochemical-based approach for hydrogel synthesis. Structures in the μm and sub-μm range on a support were synthesized using different techniques. The applications of particles and patterned layers in the μm range were demonstrated using the example of devices for handling liquids


Electron Beam Irradiation Crosslinking Density Volume Phase Transition Volume Phase Transition Temperature Hydrogel Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kuhn W (1949) Reversible Dehnung und Kontraktion bei Anderung der Ionisation eines Netzwerks poly valenter Fadenmolekülionen. Experientia 5:318CrossRefGoogle Scholar
  2. [2]
    Breitenbach JW, Karlinger H (1949) Swelling of cross-linked polymethacrylic acid. Monatshefte Chem 80:312–313CrossRefGoogle Scholar
  3. [3]
    Katchalsky A, Oplatka A (1965) Mechanochemistry. In: Proc of the 4th Intern Congr Rheol, Providence Volume Date 1963 (Pt. 1):73–97Google Scholar
  4. [4]
    Haraguchi K, Takeshi T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-Isopropylacryl-amide) and clay. Macromolecules 35:10162–10171CrossRefGoogle Scholar
  5. [5]
    Gehrke SH (1993) Synthesis, equilibrium swelling, kinetics, permeability and applications of environmentally responsive gels. Adv Polym Sci 110:81–144CrossRefGoogle Scholar
  6. [6]
    Arndt KF, Knoergen M, Richter S, Schmidt T (2006) NMR Imaging: Monitoring of swelling of environmental sensitive hydrogels. In: Webb GA (ed) Modern Magnetic Resonance Part 1, Springer-Verlag, Dordrecht, pp 183–189Google Scholar
  7. [7]
    Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218CrossRefGoogle Scholar
  8. [8]
    Dong LC, A.S. Hoffman AS (1990) Synthesis and application of thermally-reversible heterogels for drug delivery. J Control Release 13:21–31CrossRefGoogle Scholar
  9. [9]
    Yan Q, Hoffman AS (1995) Synthesis of macroporous hydrogels with rapid swelling and deswelling properties for delivery of macromolecules. Polymer 36:887–889CrossRefGoogle Scholar
  10. [10]
    Arndt KF, Schmidt T, Menge H (2001) Poly (vinyl methyl ether) hydrogel formed by high energy irradiation. Macromol Symp 164:313–322CrossRefGoogle Scholar
  11. [11]
    Gotoh T, Nakatani Y, Sakohara S (1998) Novel synthesis of thermosensitive porous hydrogels. J Polym Sci 69:895–906Google Scholar
  12. [12]
    Suzuki M, Hirasa O (1993) An approach to artificial muscle using polymer gels formed by micro-phase separation. Adv Polym Sci 110:241–261CrossRefGoogle Scholar
  13. [13]
    Yoshida R, Uccida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-grafted hydrogels with rapid de-swelling response to temperature changes. Nature 374(6519):240–242CrossRefGoogle Scholar
  14. [14]
    Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33CrossRefGoogle Scholar
  15. [15]
    English AE, Edelman ER, Tanaka T (2000) Polymer hydrogel phase transition. In: Tanaka T (ed) Experimental Methods in Polymer Science. Academic Press, pp 547–589Google Scholar
  16. [16]
    Hirotsu S, Hirokawa Y, Tanaka T (1987) Volume-phase-transitions of ionoized N-isopropyl-acrylamide gels. J Chem Phys 87, 1392CrossRefGoogle Scholar
  17. [17]
    Arndt KF, Schmidt T, Reichelt R (2001) Thermo-sensitive poly (methyl vinyl ether) micro-gel formed by high energy radiation. Polymer 42:6785–6791CrossRefGoogle Scholar
  18. [18]
    Kuckling D, Hoffmann J, Plotner M, Ferse D, Kretschmer K, Adler HJ, Arndt KF, Reichelt R (2003) Photo cross-linkable poly(N-isopropylacrylamide) copolymers III: Micro-fabricated temperature responsive hydrogels. Polymer 44: 4455–4462CrossRefGoogle Scholar
  19. [19]
    Lei M, Gu Y, Baldi A, Siegel RA, Ziaie B (2004) High-resolution technique for fabricating environmentally sensitive hydrogel microstructures. Langmuir 20:8947–8951CrossRefGoogle Scholar
  20. [20]
    Chan-Park, Mary B, Yan Y, Neo WK, Zhou W, Zhang J, Yue CY (2003) Fabrication of high aspect ratio poly (ethylene glycol)-containing microstructures by UV embossing. Langmuir 19:4371–4380CrossRefGoogle Scholar
  21. [21]
    Peppas NA, Klier J (1991) Controlled release by using poly(methacrylie acid-g-ethylene glycol) hydrogels. J Control Release 16:203–214CrossRefGoogle Scholar
  22. [22]
    Charlesby A, Alexander P (1955) Reticulation of polymers in aqueous solution by y-rays. J de Chim Phys et de Phys-Chim Biol 52:699–709Google Scholar
  23. [23]
    Hegewald J, Schmidt T, Gohs U, Gunther M, Stiller B, Reichelt R, Arndt KF (2005) Electron Beam Irradiation of Poly (vinyl methyl ether) Films: 1. Synthesis and Film Topography. Langmuir 21:6073–6080CrossRefGoogle Scholar
  24. [24]
    Hegewald J, Schmidt T, Eichhorn KJ, Kretschmer K, Kuckling D, Arndt KF (2006) Electron Beam Irradiation of Polyvinyl methyl ether) Films. 2. Temperature-Dependent Swelling Behavior. Langmuir 22:5152–5159CrossRefGoogle Scholar
  25. [25]
    Hegewald J (2004) Strahlenmechanische Synthese und Charakterisierung diinner, temperatursensitiver PVME-Schichten, diploma thesis, TU DresdenGoogle Scholar
  26. [26]
    Schmidt T, Monch JI, Arndt KF (2006) Temperature-sensitive hydrogel pattern by electron-beam lithography. Macromol Mater Eng 291:755–761CrossRefGoogle Scholar
  27. [27]
    Kaiser C (2007) Strahlenmechanische Synthese und Charakterisierung diinner Hydrogel-Multi-Schichten, diploma thesis, TU DresdenGoogle Scholar
  28. [28]
    Burkert S, Schmidt T, Gohs U, Monch JI, Arndt KF (2007) Patterning of thin Poly(N-vinyl pyrrolidone) films on Si substrates by electron beam lithography. J Appl Polym Sci 106:534–539CrossRefGoogle Scholar
  29. [29]
    Arndt KF, Kuckling D, Richter A (2000) Application of sensitive hydrogels in flow control. Polym Adv Technol 11:496–505CrossRefGoogle Scholar
  30. [30]
    Richter A, Kuckling D, Howitz S, Gehring T, Arndt KF (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12:748–753CrossRefGoogle Scholar
  31. [31]
    Richter A, Howitz S, Kuckling D, Arndt KF (2004) Influence of phenomena of volume phase transition at the behavior of hydrogel based valves. Sens Actuator B 99:451–458CrossRefGoogle Scholar
  32. [32]
    Richter A, Tiirke A, Pich A (2007) Controlled double-sensitivity of microgels applied to electronically adjustable chemostats. Adv Mater 19:1109–1112CrossRefGoogle Scholar
  33. [33]
    Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Progr Polym Sci 17:163–249CrossRefGoogle Scholar
  34. [34]
    Ichijo H, Hirasa O, Kishi R, Oowada M, Sahara K, Kokufuta E, Kohno S (1995) Thermoresponsive gels. Radiat Phys Chem 46:185–190CrossRefGoogle Scholar
  35. [35]
    Klug ED (1971) Properties of water-soluble hydroxyalkyl celluloses and their derivatives. J Polym Sci C 9:491–508Google Scholar
  36. [36]
    Winnik FM (1987) Effect of temperature on aqueous solutions of pyrene-labeled (hydroxy propyl)cellulose. Macromolecules 20:2745–2750CrossRefGoogle Scholar
  37. [37]
    Giebeler E, Stadler R (1997) ABC triblock poly ampholytes containing a neutral hydrophobic block, a polyacid, and a polybase. Macromol Chem Phys 198:3815–3825CrossRefGoogle Scholar
  38. [38]
    Xia Y, Whiteside GM (1998) Soft lithography. Angew Chem Inter Ed 37:550–557CrossRefGoogle Scholar
  39. [39]
    Chen C, Imanishi Y, Ito Y (1998) Photolithographic synthesis of hydrogels. Macromolecules 31:4379–4381CrossRefGoogle Scholar
  40. [40]
    Ward JH, Bashir R, Peppas NA (2001) Micropatterning of biomedical polymer surfaces by novel UV polymerization techniques. J Biomed Mater Res 56:351–360CrossRefGoogle Scholar
  41. [41]
    Kuckling D, Adler HJ, Arndt KF (2002) Poly(N-isopropylacrylamide) copolymers: Hydrogel formation via photocrosslinking. In: Bohindar HB, Dubin P, Osada Y (eds) Polymer Gels: Fundamentals and Applications, ACS Symp Series 833, ACS: Washington, pp 312–325CrossRefGoogle Scholar
  42. [42]
    Mimer ST (1991) Polymer Brushes. Science 251:905–914Google Scholar
  43. [43]
    Zhao B, Brittain WI (2000) Polymer brushes: surface-immobilized macromolecules. Progr Polym Sci Jpn 25:677–710CrossRefGoogle Scholar
  44. [44]
    Wounters D, Schubert US (2003) Nanolithography and nanochemistry: Probe-related patterning techniques and chemical modification for nanmetersized devices. Angew Chem Int Ed 43:2480–495CrossRefGoogle Scholar
  45. [45]
    Schmaljohann D. Nitschke M. Schulze R. Eing A. Werner C. Eichhorn KJ (2005) In: situ study of thermoresponsive behavior of micropatterned hydrogel films by imaging ellipsometry. Langmuir 21:2317–2322CrossRefGoogle Scholar
  46. [46]
    deGans, BJ, Duineveld, PC, Schubert, US (2004) Inkjet printing of polymers: State of the art and future developments. Adv Mater 16:203–213CrossRefGoogle Scholar
  47. [47]
    Lutolf MP, Raeber GP, Zisch AH, Tirelli N, Hubbell IA (2003) Cell-responsive synthetic hydrogels. Adv Mater 15:888–892CrossRefGoogle Scholar
  48. [48]
    Koh WG, Revzin A, Siminian A, Reeves T, Pishko M (2003) Control of mammalian cell and bacteria adhesion on substrates micropatterned with poly(ethylene glycol)hydrogels. Biomed Microdev 5:11–19CrossRefGoogle Scholar
  49. [49]
    Hong Y, Krsko P, Libera M (2004) Protein surface patterning using nanoscale PEG hydrogels. Langmuir 20:11123–11126CrossRefGoogle Scholar
  50. [50]
    Harmon ME, Tang M, Frank (2003) A microfluidic actuator based on thermosensitive hydrogels. Polymer 44:4547–4556CrossRefGoogle Scholar
  51. [51]
    Beebe DJ, Moore IS, Bauer JM, Yu Q, Lui RH, Devadoss C, Jo BH (2000) Functional hydrogels for autonomous flow control inside microfluidic channels, Nature 404:588–590CrossRefGoogle Scholar
  52. [52]
    Marshall Al, Blyth I, Davidson CAB, Lowe CR (2003) pH-sensitive holographic sensors. Anal Chem 75:4423–4431CrossRefGoogle Scholar
  53. [53]
    Richter A, Bund A, Keller M, Arndt KF (2004) Characterization of a microgravimetric sensor based on pH sensitive hydrogels. Sens Actuat B 99:579–585CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 2009

Authors and Affiliations

  • Karl-Friedrich Arndt
    • 1
  • Andreas Richter
    • 1
  • Ingolf Mönch
    • 2
  1. 1.Physical Chemistry of PolymersUniversity of DresdenGermany
  2. 2.Institute for Integrative NanosciencesIFW DresdenGermany

Personalised recommendations