Skip to main content

Hydrogels and Tissue Engineering

  • Chapter
Hydrogels

Abstract

Hydrogels are water-swollen polymeric materials that maintain a distinct three-dimensional structure. They were the first biomaterials designed for use in the human body. Traditional methods of biomaterial synthesis include crosslinking copolymerization, crosslinking of reactive polymer precursors, and crosslinking via polymer-polymer reaction. These methods of hydrogel synthesis were limited in the control of their detailed structure. Other inadequacies of traditional hydrogels have been poor mechanical properties and slow or delayed response times to external stimuli. The huge field of biomaterials research has received a strong revitalization by several novel approaches in hydrogel design. Enhanced biomechanical properties of hydrogel preparation, superporous and comb-type grafted hydrogels with fast response times, and self-assembly are just a few examples of hydrogel biomaterials with a smart future. Potential applications of all the types of hydrogels include: tissue engineering, synthetic extracellular matrix, implantable devices, biosensors, separation systems (valves to control permeability across porous membranes, or materials for affinity separation based on the specific recognition of monomelic strands), materials controlling the activity of enzymes, phospholipid bilayer destabilizing agents, materials controlling reversible cell attachment, nanoreactors with precisely placed reactive groups in three-dimensional space and smart microfluidics. With regard to the applications of hydrogels in recent years, particular attention has been devoted to drug delivery, clinical application as well as to the use of hydrogels as scaffolds for tissue engineering and regenerative medicine. Among the materials used for regenerative applications, hydrogels seem very promising and are receiving increasing attention due to their ability to entrap large amount of water, good biocompatibility and the ability to mimic tissue environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baroli B (2007) Hydrogels for tissue engineering and delivery of tissue-inducing substances. J Pharm Sci 96(9):2197–2223

    Article  CAS  Google Scholar 

  2. Brandl F, Sommer F, Goepferich A (2007) Rational design of hydrogels for tissue engineering: Impact of physical factors on cell behavior. Biomaterials 28(2): 134–146

    Article  CAS  Google Scholar 

  3. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(l):47–55

    Article  CAS  Google Scholar 

  4. Mann BK (2003) Biologic gels in tissue engineering. Clin Plast Surg 30(4):601–609

    Article  Google Scholar 

  5. Tessmar JK, Gopferich AM (2007) Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):274–291

    Article  CAS  Google Scholar 

  6. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030

    Article  CAS  Google Scholar 

  7. Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56(11):1635–1647

    Article  Google Scholar 

  8. Kashyap N, Kumar N, Kumar MN (2005) Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst 22(2):107–149

    Article  CAS  Google Scholar 

  9. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    Article  CAS  Google Scholar 

  10. Hoffman AS (2001) Hydrogels for biomedical applications. Ann N Y Acad Sci 944: 62–73

    CAS  Google Scholar 

  11. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3–12

    Article  CAS  Google Scholar 

  12. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7): 1869–1879

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia, Milan

About this chapter

Cite this chapter

Zavan, B., Cortivo, R., Abatangelo, G. (2009). Hydrogels and Tissue Engineering. In: Hydrogels. Springer, Milano. https://doi.org/10.1007/978-88-470-1104-5_1

Download citation

Publish with us

Policies and ethics