• Nicola Carlomagno
  • Francesca Duraturo
  • Gennaro Rizzo
  • Cristiano Cremone
  • Paola Izzo
  • Andrea Renda
Part of the Updates in Surgery book series (UPDATESSURG)


Carcinogenesis is the process that determines the evolution of cancer and it is triggered from mutations in the DNA of normal cells. The resulting alteration in the equilibrium between proliferation and programmed cell death leads to uncontrolled cell division and, therefore, tumor formation. Before the arrival of biomolecular techniques, which revealed that cancer is a pathology with genetic origins, there were various hypotheses regarding the etiology of this complex disease.


Programme Cell Death Hereditary Colorectal Cancer Multiple Primary Malignancy International Human Genome Sequencing Consortium Basement Membrane Degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jones E (1960) The life and works of Guilhelmus Fabricius Hildanus (1560-1634) Part I Med Hist 4(2): 112–134PubMedGoogle Scholar
  2. 2.
    Bauer KH (1928) Mutationstheorie der Geschwulst-Entstehung. Übergang von Körperzellen in Geschwulstzellen durch GenÄnderung. Springer, BerlinGoogle Scholar
  3. 3.
    Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767PubMedCrossRefGoogle Scholar
  4. 4.
    Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170PubMedCrossRefGoogle Scholar
  5. 5.
    Hahn M, Saeger HD, Schackert HK (1999) Hereditary colorectal cancer: clinical consequences of predictive molecular testing Int J Colorectal Dis 14:184–193PubMedCrossRefGoogle Scholar
  6. 6.
    Ryser HJ (1971) Chemical carcinogenesis. N Engl J Med 23 285(13):721–734Google Scholar
  7. 7.
    Ko TC, Evers BM (2003) Biologia molecolare e cellulare. In: Sabiston (ed) Trattato di chirurgia. Le basi biologiche della moderna pratica chirurgica, prima edizione italiana sulla sedicesima americana. Antonio Delfino Editore, Rome, pp 13–27Google Scholar
  8. 8.
    Knudson A (2001) Alfred Knudson and his two-hit hypothesis (Interview by Ezzie Hutchinson). Lancet Oncol 2(10):642–645PubMedCrossRefGoogle Scholar
  9. 9.
    Devilee P, Cleton-Jansen AM, Cornelisse CJ (2001) Ever since Knudson. Trends Genet 17(10):569–573PubMedCrossRefGoogle Scholar
  10. 10.
    Loberg RD (2007) The lethal phenotype of cancer: the molecular basis of death due to malignancy. CA Cancer J Clin 57:225–241PubMedCrossRefGoogle Scholar
  11. 11.
    Radman M, Matic I, Taddei F (1999) Evolution of evolvability. Ann NY Acad Sci 870:146–155PubMedCrossRefGoogle Scholar
  12. 12.
    Greaves M (2002) Cancer causation: the Darwinian downside of past success? Lancet Oncol 3:244–251PubMedCrossRefGoogle Scholar
  13. 13.
    Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28PubMedCrossRefGoogle Scholar
  14. 14.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  15. 15.
    Nesse RM, Williams GC (1998) Evolution and the origins of disease. Sci Am 279:86–93PubMedCrossRefGoogle Scholar
  16. 16.
    Coffey DS (2001) Similarities of prostate and breast cancer: Evolution, diet, and estrogens. Urology 57:31–38PubMedCrossRefGoogle Scholar
  17. 17.
    Farinati F, Cardin R, Della Libera G et al (1994) The role of anti-oxidants in the chemoprevention of gastric cancer. Eur J Cancer Prev 3(suppl):93–97PubMedCrossRefGoogle Scholar
  18. 18.
    Abastado JP (1996) Apoptosis: function and regulation of cell death. Res Immunol 147:443–456PubMedCrossRefGoogle Scholar
  19. 19.
    Raff M (1998) Cell suicide for beginners. Nature 396:119–122PubMedCrossRefGoogle Scholar
  20. 20.
    Wang J, Han W, Zborowska E et al (1998) Reduced expression of transforming growth factor beta type 1 receptor contributes to malignancies of human colon carcinoma cells. Science 280:1077–1082PubMedCrossRefGoogle Scholar
  21. 21.
    Staton CA, Lewis CE (2005) Angiogenesis inhibitors found within the haemostasis pathway J Cell Mol Med 9:286–302PubMedCrossRefGoogle Scholar
  22. 22.
    Browder T, Folkman J, Pirie-Shephered S (2000) The hemostatic system as a regulator of angiogenesis. J Biol Chem 275:1521–1524PubMedCrossRefGoogle Scholar
  23. 23.
    Dardik R, Loscalzo J, Inbal A (2006) Factor XIII (FXIII) and angiogenesis. J Thromb Haemost 4:19–25PubMedCrossRefGoogle Scholar
  24. 24.
    Liu CC, Shen Z, Kung HF, Lin MCM (2006) Cancer gene therapy targeting angiogenesis: an updated review. World J Gastroenterol 12(43):6941–6948PubMedGoogle Scholar
  25. 25.
    Tandle A, Blazer DG 3rd, Libutti SK (2004) Antiangiogenic gene therapy of cancer: recent developments. J Transl Med 2:22PubMedCrossRefGoogle Scholar
  26. 26.
    Atkin GK, Chopada A (2006) Tumour angiogenesis: the relevance to surgeons. Ann R Coll Surg Engl 88:525–529PubMedCrossRefGoogle Scholar
  27. 27.
    Cao Y (2005) Tumor angiogenesis and therapy. Biomed Pharmacother 59(Suppl 2):S340–S343PubMedCrossRefGoogle Scholar
  28. 28.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedGoogle Scholar
  29. 29.
    Nijziel MR (2006) From Trousseau to angiogenesis: the link between the haemostatic system and cancer. Netherlands J Med 64(11):403–410Google Scholar
  30. 30.
    Ellis LM, Liu W, Ahmad SA et al (2001) Overview of angiogenesis: biologic implications for antiangiogenic therapy. Semin Oncol 28(Suppl 16):94–104PubMedCrossRefGoogle Scholar
  31. 31.
    Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6PubMedCrossRefGoogle Scholar
  32. 32.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364PubMedCrossRefGoogle Scholar
  33. 33.
    Poon RT, Fan ST, Wong J (2003) Clinical significance of angiogenesis in gastrointestinal cancers: a target for novel prognostic and therapeutic approaches. Ann Surg 238:9–28PubMedCrossRefGoogle Scholar
  34. 34.
    Rak J, Filmus J, Kerbel RS (1996) Reciprocal paracrine interactions between tumour cells and endothelial cells: the “angiogenesis progression” hypothesis. Eur J Cancer 32A:2438–2450PubMedCrossRefGoogle Scholar
  35. 35.
    Nadal CP, Garcea G, Doucas H et al (2006) Molecular prognostic markers in resectable colorectal liver metastases: a systematic review. Eur J Cancer 42:1728–1743CrossRefGoogle Scholar
  36. 36.
    Anisimov VN (2007) Biology of aging and cancer. Cancer Control 14(1):23–31PubMedGoogle Scholar
  37. 37.
    Brown I, Heys SD, Schofield AC (2003) From peas to “chips” — the new millennium of molecular biology: a primer for the surgeon. World J Surg Oncol 21:1–6Google Scholar
  38. 38.
    Dulbecco R (1986) A turning point in cancer research: sequencing the human genome. Science 231(4742): 1055–1056PubMedCrossRefGoogle Scholar
  39. 39.
    Hood LE, Smith LM, Sanders JZ et al (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321(6071):674–679PubMedCrossRefGoogle Scholar
  40. 40.
    International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409(6822): 860–921CrossRefGoogle Scholar
  41. 41.
    The Human Genome Project (2001) In their own words. Science 291(5507): 1196CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • Nicola Carlomagno
    • 1
  • Francesca Duraturo
    • 2
  • Gennaro Rizzo
    • 1
  • Cristiano Cremone
    • 1
  • Paola Izzo
    • 1
  • Andrea Renda
    • 1
  1. 1.Surgical, Anesthesiology-rianimative and Emergency Sciences DepartmentFederico II UniversityNaplesItaly
  2. 2.Department of Biochemistry and Biomedical TechnologiesFederico II UniversityNaplesItaly

Personalised recommendations