Diagnostic Imaging Techniques for Synchronous Multiple Tumors

  • Vincenzo Tammaro
  • Sergio Spiezia
  • Salvatore D’Angelo
  • Simone Maurea
  • Giovanna Ciolli
  • Marco Salvatore
Part of the Updates in Surgery book series (UPDATESSURG)


According to the literature, 1.2–3.5% of cancer patients are unexpectedly affected by a new synchronous neoplasia (multiple primary malignancies, MPM), detected during a diagnostic or therapeutic phase. In fact, patients already successfully treated for a neoplasia have at least a two-fold possibility of developing a further cancer compared to an age-matched individual never been affected by a neoplastic disease [1]. Over the last several years, world-wide scientific research has been conducted aimed at understanding the cause of this increased risk.


Positron Emission Tomography Compute Tomography Colonography Virtual Colonoscopy Index Tumor Incomplete Colonoscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Research Group for Population-based Cancer Registration in Japan (2002) Cancer incidence and incidence rates in Japan in 1997: estimates based on data from 12 population-based cancer registries. Jpn J Clin Oncol 32:318–322CrossRefGoogle Scholar
  2. 2.
    Kumagai Y, Kawano T, Nakajima Y et al (2001) Multiple primary cancers associated with esophageal carcinoma. Surg Today 31:872–876PubMedCrossRefGoogle Scholar
  3. 3.
    Wax MK, Myers LL, Gabalski EC et al (2002) Positron emission tomography in the evaluation of synchronous lung lesions in patients with untreated head and neck cancer. Arch Otolaryngol Head Neck Surg 128:703–707PubMedGoogle Scholar
  4. 4.
    Bar-Meir E (2004) Assessment of the risk of perforation at CT colongraphy. Presented at the 90th Scientific Assembly and Annual Meeting of Radiological Society of North America, Chicago, November 26-December 3, 2004Google Scholar
  5. 5.
    Heiken JP, Peterson CM, Menias CO et al (2005) Virtual colonoscopy for colorectal cancer screening: current status. Cancer Imaging 5:S133–S139PubMedCrossRefGoogle Scholar
  6. 6.
    Xiong T, Richardson M, Woodroffe R et al (2005) Incidental lesions found on CT colonography: their nature and frequency. Br J Radiol 78:22–29PubMedCrossRefGoogle Scholar
  7. 7.
    Hellstrom M, Svensson MH, Lasson A (2004) Extracolonic and incidental findings on CT colonography (virtual colono-scopy). AJR Am J Roentgenol 182:631–638PubMedGoogle Scholar
  8. 8.
    Hara AK (2000) Incidental extracolonic findings at CT colonography. Radiology 215:353–357PubMedGoogle Scholar
  9. 9.
    Pickhardt PJ (2003) Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults. N Engl J Med 349:2191–200PubMedCrossRefGoogle Scholar
  10. 10.
    Fenlon HM (1999) Occlusive colon carcinoma: virtual colonoscopy in the preoperative evaluation of the proximal colon. Radiology 210:423–428PubMedGoogle Scholar
  11. 11.
    Neri E, Giusti P, Bartolla L et al (2002) Colorectal cancer: role of CT colonography in preoperative evaluation after incomplete colonoscopy. Radiology 223:615–619PubMedCrossRefGoogle Scholar
  12. 12.
    Kim JH, Kim WH, Kim TI et al (2007) Incomplete colonoscopy in patients with occlusive colorectal cancer: usefulness of CT colongraphy according to tumor location. Yonsei Med J 48(6):934–941PubMedCrossRefGoogle Scholar
  13. 13.
    Veit P, Kuehle C, Beyer T et al (2006) Whole body positron tomography/computed tomography (PET/CT) tumor staging with integrated PET/CT colongraphy: technical feasibility and first experiences in patients with colorectal cancer. Gut 55:68–73PubMedCrossRefGoogle Scholar
  14. 14.
    Kalender WA (1995) Thin-section three-dimensional spiral CT: is isotopic imaging possible? Radiology 197:578–580PubMedGoogle Scholar
  15. 15.
    Ueda T, Mori K, Minami M et al (2006) Trends in oncological CT imaging: clinical application of multi detector-row CT and 3D-CT imaging. Int J Clin Oncol 11:268–277PubMedCrossRefGoogle Scholar
  16. 16.
    Ros PR, Ji H (2002) Special focus session: multisection (multidetector) CT: application in the abdomen. Radiographics 22:697–700PubMedGoogle Scholar
  17. 17.
    Fanti S, Franchi R, Battista G et al (2005) PET e PET-CT. Stato dell’arte e prospettive future. Radiol Med (Torino) 110:1–15Google Scholar
  18. 18.
    Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processed. PNAS 97:9226–9233PubMedCrossRefGoogle Scholar
  19. 19.
    Van Rees BP, Cleton-Jansen AM, Cense HA et al (2000) Molecular evidence of field cancerization in a patient with 7 tumors of the aerodigestive tract. Hum Pathol 31:269–271PubMedCrossRefGoogle Scholar
  20. 20.
    Gambhir SS et al (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42(suppl):1S–93SPubMedGoogle Scholar
  21. 21.
    van Westreenen HL, Westerterp M, Jager PL (2005) Synchronous primary neoplasms detected on FDG PET in staging of patients with esophageal cancer. J Nucl Med 46:1321–1325PubMedGoogle Scholar
  22. 22.
    Wahl RL (2004) Why nearly all PET of abdominal and pelvic cancers will be performed as PET/CT. J Nucl Med 45(suppl):82S–95SPubMedGoogle Scholar
  23. 23.
    Bicik I, Bauerfeind P, Breitbach T et al (1997) Inflammatory bowel disease activity measured by positron-emission tomography. Lancet 350:262PubMedCrossRefGoogle Scholar
  24. 24.
    Kamel EM, Thumshirn M, Truninger K et al (2004) Significance of incidental 18F-FDG accumulations in the gastrointestinal tract in PET/CT: correlation with endoscopic and histopathology results. J Nucl Med 45(11): 1804–1810PubMedGoogle Scholar
  25. 25.
    Kresnik E, Gallowitsch HJ, Mikosch P et al (2002) (18)F-FDG positron emission tomography in the early diagnosis of enterocolitis: preliminary results. Eur J Nucl Med MD Imaging 29:1389–1392CrossRefGoogle Scholar
  26. 26.
    van Westreenen HL, Heeren PA, Jager PL et al (2003) Pitfalls of positive findings in staging esophageal cancer with F1 8-fluoro-deoxyglucose positron emission tomography. Ann Surg Oncol 10:1100–1105PubMedCrossRefGoogle Scholar
  27. 27.
    Costa DL, Visvikis D, Crosdale I et al (2003) Positron emission and computed X-ray tomography: a coming together. Nucl Med Commun 24:351–358PubMedCrossRefGoogle Scholar
  28. 28.
    Choi JY, Lee KS, Kwon OJ et al (2005) Improved detection of second primary cancer using integrated 18F fluorodeoxyglucose positron emission tomography and computed tomography for initial tumor staging. J Clin Oncol 23(30): 7654–7659PubMedCrossRefGoogle Scholar
  29. 29.
    Schmidt GP, Haug AR, Schoenberg SO, Reiser MF (2006) Whole-body MRI and PET-CT in the management of cancer patients. Eur Radiol 16:1216–1225PubMedCrossRefGoogle Scholar
  30. 30.
    Cohade C, Osman M, Leal J, Wahl RL (2003) Direct comparison of (18)F-FDG PET an PET/CT in patients with colorectal carcinoma. J Nucl Med 44:1797–1803PubMedGoogle Scholar
  31. 31.
    Beyer T, Townsend DW, Blodgett TM (2002) Dual-modality PET/CT tomography for clinical oncology. Am J Nucl Med 46:24–34Google Scholar
  32. 32.
    Bar-Shalom R, Yefremov N, Guralnik L et al (2003) Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 44:1200–1209PubMedGoogle Scholar
  33. 33.
    Antoch G, Freudenberg LS, Beyer T et al (2004) To enhance or not to enhance? 18F-FDG and CT contrast agents in dual modality 18F-FDG PET/CT. J Nucl Med 45(suppl 1):S56–S65Google Scholar
  34. 34.
    Townsend DW, Beyer T (2002) A combined PET/CT scanner: the path to true image fusion. Br J Radiol 75(suppl):S24–S30PubMedGoogle Scholar
  35. 35.
    Czermin Y (ed) (2004) PET/CT: imaging function and structure. J Nucl Med 45(suppl): 1S–103SGoogle Scholar
  36. 36.
    Schmidt GP, Baur-Melnyk A, Herzog P et al (2005) High-resolution whole-body magnetic resonance image tumor staging with the use of parallel imaging versus dual-modality positron emission tomography-computed tomography: experience on a 32-channel system. Invest Radiol 40:743–753PubMedCrossRefGoogle Scholar
  37. 37.
    Langenhoff BS, Oyen WJ, Jager GJ et al (2002) Efficacy of fluorine-18-deoxiglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: a prospective study. J Clin Oncol 20:4453–4458PubMedCrossRefGoogle Scholar
  38. 38.
    Vogel WV, Wiering B, Corstens FH et al (2005) Colorectal cancer: the role of PET/CT in recurrence. Cancer Imaging 5:S143–S148PubMedCrossRefGoogle Scholar
  39. 39.
    Lauenstein TC, Goehde SC, Herborn CU et al (2004) Whole-body MR imaging: evaluation of patients for metastases. Radiology 233:139–148PubMedCrossRefGoogle Scholar
  40. 40.
    Schlemmer HP, Schaefer J, Pfannenberg C et al (2005) Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest Radiol 40:64–71PubMedCrossRefGoogle Scholar
  41. 41.
    Schaefer JF, Vollmar J, Schick F et al (2005) Detection of pulmonary nodules with breathhold magnetic resonance imaging in comparision with computed tomography. Roto Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 177:41–49CrossRefGoogle Scholar
  42. 42.
    Ajaj W, Pelster G, Treichel U et al (2003) Dark lumen magnetic resonance colonography: comparision with conventional colonoscopy for the detection of colorectal pathology. Gut 52:1738–1743PubMedCrossRefGoogle Scholar
  43. 43.
    Schroeder T, Ruehm SG, Debatin JF et al (2005) Detection of pulmonary nodules using a 2D HASTE MR sequence comparison with MDCT. AJR Am J Roentgen 185:979–984CrossRefGoogle Scholar
  44. 44.
    Luboldt W, Bauerfeind P, Wildermuth S et al (2000) Colonic masses: detection with MR colonography. Radiology 216:383–388PubMedGoogle Scholar
  45. 45.
    Schaefer JF, Schlemmer HP (2006) Total-body MR-imaging in oncology. Eur Radiol 16:2000–2015PubMedCrossRefGoogle Scholar
  46. 46.
    Willinek WA, Gieseke J, von Falkenhausen M et al (2003) Sensitivity-encoding for fast MR imaging of the brain in patients with stroke. Radiology 228:669–675PubMedCrossRefGoogle Scholar
  47. 47.
    Cercignani M, Horsfield MA, Agosta F, Filippi M (2003) Sensitivity-encoded diffusion tensor MR imaging of the cervical cord. AJNR Am J Neuroradiol 24:1254–1256PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • Vincenzo Tammaro
    • 1
  • Sergio Spiezia
    • 2
  • Salvatore D’Angelo
    • 1
  • Simone Maurea
    • 3
  • Giovanna Ciolli
    • 1
  • Marco Salvatore
    • 3
  1. 1.Surgical, Anesthesiology-rianimative and Emergency Sciences DepartmentFederico II UniversityNaplesItaly
  2. 2.Unit of Screening and Follow-up for Hereditary and Familial Cancer, Department of Molecular and Clinical Endocrinology and OncologyFederico II UniversityNaplesItaly
  3. 3.Department of Biomorfological and Functional Sciences, Unit of Diagnostic Imaging and RadiotherapyFederico II UniversityNaplesItaly

Personalised recommendations