A Complex Approach to Estimate Shadow Economy: The Structural Equation Modelling

  • Roberto Dell’Anno
  • Friedrich Schneider
Part of the New Economic Windows book series (NEW)


This article develops some ideas of the application of the “complexity” approach in economics. The complexity approach criticizes the scientific method by distrusting sample reductionism and proposes a multidisciplinary approach. Hence, it abolishes old paradigms by arguing to build up another one with the endowment of greater realism. We argue that one should promote the sharing of knowledge and/or methodologies among disciplines and, for economics, limiting the “autistic” (or autarchy) process, which is critically discussed in economics already. Remembering (1936, p. viii) words, the problem for economics seems to be not so much to develop new ideas but to have the difficulties of “escaping from old ideas” and from “habitual modes of thought and expression”.


Latent Variable Structural Equation Modelling Shadow Economy European Economic Review Underground Economy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aigner D. J., Hsiao C., Kapteyn A., Wansbeek T., (1984). Latent variable models in econometrics. In: Griliches, Z., Intriligator, M.D., (Eds) Handbook of Econometrics, vol. 2, North-Holland, Amsterdam, pp. 1321–1393.Google Scholar
  2. 2.
    Albin P. S., Duncan K. F., (1998). Barriers and Bounds to Rationality: Essays on Economic Complexity and Dynamics in Interacting Systems. Princeton: Princeton University Press.Google Scholar
  3. 3.
    Bajada C., Schneider F., (2005). The Shadow Economies of the Asia-Pacific, Pacific Economic Review 10(3), 379–401.CrossRefGoogle Scholar
  4. 4.
    Bentler P. M., Chou C. P., (1987). Practical issues in structural modeling. Sociological Methods and Research 16(1), 78–117CrossRefGoogle Scholar
  5. 5.
    Bollen K. A., (1989). Structural equations with latent variables, New York: John Wiley & Sons.MATHGoogle Scholar
  6. 6.
    Bollen K. A., Long J. S., (1993). Testing structural equation models. Beverly Hills, CA: Sage.Google Scholar
  7. 7.
    Breusch T., (2005a). The Canadian Underground Economy: An Examination of Giles and Tedds, Canadian Tax Journal 53(2), 367–391.Google Scholar
  8. 8.
    Breusch T., (2005b). Estimating the underground economy using MIMIC models, working paper, Canberra, Australia ( Scholar
  9. 9.
    Capraro R. M., Kulm G., Capraro M. M., (2002). Investigating the Complexity of Middle Grade Students’ Understandings of Mathematical Constructs: An Example from Graphic Representation. Paper presented at the Annual Meeting of the American Educational Research Association (New Orleans, LA, April 1-5, 2002). Downloadable from ERIC — the Education Resources Information Center.Google Scholar
  10. 10.
    Cassar A., (2001). An index of the underground economy in Malta. Bank of Valletta Review 23, 44–62.Google Scholar
  11. 11.
    Cooley W. W., (1978). Explanatory observational studies. Educational Researcher 7, 9–15.Google Scholar
  12. 12.
    Corning P.A., (1998). Complexity Is Just a Word!, Technological Forecasting and Social Change 59, 197–200.CrossRefGoogle Scholar
  13. 13.
    Cziraky D., (2004a). LISREL 8.54: A program for structural equation modelling with latent variables. Journal of Applied Econometrics 19, 135–141.CrossRefGoogle Scholar
  14. 14.
    Cziraky D., (2004b). Estimation of dynamic structural equation models with latent variables. Advances in Methodology and Statistics 1(1), 185–204.Google Scholar
  15. 15.
    Cziraky, D. (2005). A unifying statistical framework for dynamic structural equation models with latent variables. ( Scholar
  16. 16.
    Cziraky D., Gillman M., (2003). Inflation-growth causality with a latent underground economy model. Research Report, WIIW/GDNSEE, research field II Enterprise Development, Informal Economy and Labour Markets. Vienna: The Vienna Institute for International Economic Studies ( GDN_EnterpriseLabourInformalInflationGrowthUnderground.pdf).Google Scholar
  17. 17.
    Day R. H., (1994). Complex Economic Dynamics, Volume I: An Introduction to Dynamical Systems and Market Mechanisms. Cambridge: MIT Press.Google Scholar
  18. 18.
    Dell’Anno R., (2003). Estimating the Shadow Economy in Italy: a Structural Equation Approach, Working paper 2003-7, Department of Economics, University of Aarhus, DK.Google Scholar
  19. 19.
    Dell’Anno R., (2007). The Shadow Economy in Portugal: an analysis with the MIMIC approach, Journal of Applied Economics, 10(2) 253–277.Google Scholar
  20. 20.
    Dell’Anno R., Gomez-Antonio M., Alanon Pardo A., (2007). Shadow Economy in three different Mediterranean Countries: France, Spain and Greece. A MIMIC Approach, Empirical Economics 33(1), 51–84.CrossRefGoogle Scholar
  21. 21.
    Dell’Anno R., Schneider F., (2003). The Shadow Economy of Italy and other OECD Countries: What do we know? Journal of Public Finance and Public Choice/Economia delle scelte pubbliche 21(2/3), 97–120.Google Scholar
  22. 22.
    Dell’Anno R., Schneider F., (2006). Estimating the underground economy: a response to T. Breusch’s critique, Discussion Paper, 2006-07, Johanes Kepler University of Linz, Department of Economics, Austria.Google Scholar
  23. 23.
    Dell’Anno R., Solomon H. O., (2007). Shadow Economy and unemployment rate in U.S.A. Is there a structural relationship? An empirical analysis, Forthcoming Applied Economics.Google Scholar
  24. 24.
    Durlauf S. N., (2005). Complexity and Empirical Economics. The Economic Journal 115, 225–243.CrossRefGoogle Scholar
  25. 25.
    Frey B. S., Weck-Hannemann H., (1984). The Hidden Economy as an ‘Unobservable’ Variable. European Economic Review 26, 33–53.CrossRefGoogle Scholar
  26. 26.
    Garson D. G., (2005). Statnotes: An online textbook. ( /structur.htm).Google Scholar
  27. 27.
    Giles D.E.A., (1999). Measuring the hidden Economy: Implications for Econometric Modeling. The Economic Journal 109(46), 370–380.CrossRefGoogle Scholar
  28. 28.
    Giles D.E.A., Tedds L. M., (2002). Taxes and the Canadian Underground Economy, Canadian Tax Foundation: Toronto.Google Scholar
  29. 29.
    Goldberger A. S., (1972). Structural equation methods in the social sciences. Econometrica 40(6), 979–1001.CrossRefMathSciNetGoogle Scholar
  30. 30.
    Hayduk L. A., (1987). Structural equation modelling with LISREL. Essential and advances. The Johns Hopkins University Press. London.Google Scholar
  31. 31.
    Helberger C., Knepel H., (1988). How Big is the Shadow Economy? A Re-Analysis of the Unobserved-Variable Approach of B.S. Frey and H.Weck-Hannemann. European Economic Review 32, 965–976.CrossRefGoogle Scholar
  32. 32.
    Horgan J., (1997). The End of Science: Facing the Limits of Knowledge in the Twilight of the Scientific Age, paperback edition. New York: Broadway Books.Google Scholar
  33. 33.
    Hoyle R. H., (Eds.) (1995). Structural Equation Modeling: Concepts, Issues, and Applications. Thousand Oaks, CA: Sage.Google Scholar
  34. 34.
    Jaccard J., Wan C. K., (1996). LISREL approaches to interaction effects in multiple regression. Thousand Oaks, CA: Sage Publications.Google Scholar
  35. 35.
    Jöreskog K.G., Goldberger A. S., (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association 70, 631–639.CrossRefMathSciNetGoogle Scholar
  36. 36.
    Jöreskog K.G., Sorbom D., (1993). LISREL 8, User’s Reference Guide. Chicago: Scientific Software International.Google Scholar
  37. 37.
    Keynes J. M., (1936). General theory of employment, interest and money. London: Macmillan.Google Scholar
  38. 38.
    Laibson D. I., Zeckhauser R., (1998). Amos Tversky and the Ascent of Behavioral Economics, Journal of Risk and Uncertainty 16, 7–47.MATHCrossRefGoogle Scholar
  39. 39.
    Loayza N. V., (1996). The Economics of the Informal Sector: A Simple Model and Some Empirical Evidence from Latin America, Carnegie-Rochester Conference Series on Public Policy 45, 129–162.CrossRefGoogle Scholar
  40. 40.
    Lomax R., (1989). Covariance structure analysis: Extensions and developments. In: Thompson, B. (Eds.), Advances in social science methodology. vol. 1. Greenwich, CT: JAI Press, pp. 170–204Google Scholar
  41. 41.
    Muthen B. O., (2002). Beyond SEM: general latent variable modeling. Behaviormetrika 29(1), 81–117.MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Rabin M., (2002). A perspective on psychology and Economics. European Economic Review 46, 657–85.CrossRefGoogle Scholar
  43. 43.
    Rosser J. B. Jr., (1999). On the complexities of complex economic dynamics. Journal of Economic Perspectives 12(4), 169–192.CrossRefGoogle Scholar
  44. 44.
    Schneider F., (2005). Shadow Economies around the World: What do we really know. European Journal of Political Economy 21(3), 598–642.CrossRefGoogle Scholar
  45. 45.
    Schneider F., Enste D. H., (2000). Shadow Economies: Size, Causes, and Consequences. Journal of Economic Literature 38(1), 77–114Google Scholar
  46. 46.
    Smith R. S., (2002). The Underground Economy: Guidance for Policy Makers?. Canadian Tax Journal 50(5), 1655–1661.Google Scholar
  47. 47.
    Stapleton D. C., (1978). Analyzing political participation data with a MIMIC Model. Sociological Methodology 15, 52–74.CrossRefGoogle Scholar
  48. 48.
    Stevens J., (1996). Applied multivariate statistics for the social sciences (3rd ed.). Lawrence Erlbaum Associates, Inc., USA.Google Scholar
  49. 49.
    Thomas J., (1992). Informal economic activity. LSE, Handbooks in Economics, London, Harvester Wheatsheaf.Google Scholar
  50. 50.
    Velupillai K. V., (Eds.) (2005). Computability, Complexity and Constructivity in Economic Analysis. Blackwell. Victoria, Australia.MATHGoogle Scholar
  51. 51.
    Watson M. W., Engle R. F., (1983). An alternative Algorithms for the estimation of Dynamic Factor, MIMIC and Varying Coefficient Regression models. Journal of Econometrics 23, 385–400.MATHCrossRefGoogle Scholar
  52. 52.
    Zellner A., (1970). Estimation of regression relationships containing unobservable variables. International Economic Review 11, 441–454.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • Roberto Dell’Anno
    • 1
  • Friedrich Schneider
    • 2
  1. 1.Dipartimento di Economia, Matematica e StatisticaUniversità di FoggiaItaly
  2. 2.Department of EconomicsJohannes Kepler University LinzAustria

Personalised recommendations