Advertisement

Analysis of Qualitative and Quantitative Rankings in Multicriteria Decision Making

  • Livia D’Apuzzo
  • Gabriella Marcarelli
  • Massimo Squillante
Part of the New Economic Windows book series (NEW)

Abstract

The decision procedures applied in MCDM (Multicriteria Decision Making) are the most suitable in coping with problems involved by social choices, which have to satisfy a high number of criteria. In such a framework an important role is played by the Analytic Hierarchy Process (A.H.P., for short), a procedure developed by T.L. Saaty at the end of the 70s [14], [15], [16], and widely used by governments and companies in fixing their strategies [10], [16], [19]. The A.H.P. shows how to use judgement and experience to analyze a complex decision problem by combining both qualitative and quantitative aspects in a single framework and generating a set of priorities for alternatives.

Keywords

Multicriteria Decision Pairwise Comparison Matrix Priority Vector Intensity Vector Actual Ranking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczel, J. (1966). Lectures on Functional Equation and their Applications. New York and London. Accademic Press.Google Scholar
  2. 2.
    Aczel, J. and Saaty, T. L. (1983). Procedures for Synthesizing Ratio Judgements. Journal math. psychology 27, 93–102.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Basile, L. and D’Apuzzo L. (1996). Ordering for classes of aggregation operators, International Journal of Uncertainty, Fuzziness and Knowledge Based Systems, World Scientific Publishing Co. Pte. Ltd., NJ — USA, 4.2, (1996), 145–156.Google Scholar
  4. 4.
    Basile, L. and D’Apuzzo L. (1997). Ranking and Weak Consistency in the A.H.P. Context. Rivista di matematica per le scienze economiche e sociali, 20(1).Google Scholar
  5. 5.
    Basile, L. and D’Apuzzo L. (2002). Weak Consistency and Quasi-Linear Means Imply the Actual Ranking. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, World Scientific Publishing, 10, no. 3, 227–239.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Basile, L. and D’Apuzzo L. (2006). Matrici di valutazione ordinale e matrici intensità. P. Amenta, L.D’Ambra, M.Squillante, A.G.S.Ventre, Metodi, Modelli e Tecnologie dell’informazione a Supporto delle Decisioni, Franco Angeli, 143–158.Google Scholar
  7. 7.
    Basile, L. and D’Apuzzo L. (2006). Transitive Matrices, Strict Preference and Ordinal evaluation Operators. Soft Computing — A Fusion of Foundations, Methodologies and Applications, vol.10, no.10 Springer-Verlag, 933–940 (http://dx.doi.org/10.1007/s00500-005-0020-z)MATHGoogle Scholar
  8. 8.
    Basile, L. and D’Apuzzo L. (2006). Transitive Matrices, Strict Preference and Intensity Operators. Mathematical Methods in Economics and Finance, 1, 21–36.MathSciNetGoogle Scholar
  9. 9.
    D’Apuzzo L., Mrcarelli G. and Squillante M. (2006). Pairwise Comparison Matrices: Properties And Strict Preference Order. International Journal of Intelligent Systems. Accepted for the publication.Google Scholar
  10. 10.
    Fusco Girard L. and Nijkamp P. (1997). Le valutazioni per lo sviluppo sostenibile della citt e del territorio. Franco Angeli, Napoli.Google Scholar
  11. 11.
    Krovc, J. (1987). Ranking Alternatives-Comparison of Different Methods Based on Binary Comparison Matrices. European Journal of Operational Research. 32, 86–95. North Holland.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Narasimhan, R. (1982). A Geometric Averaging Procedure for Constructing Super Transitive Approximation to Binary Comparison Matrices. Fuzzy Sets and Systems, 8, 53–6.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Roberts, F.S. (1979). Measurement Theory with Applications to Decisionmaking, Utility, and Social Siences. Encyclopedia of Mathematics and its Applications, vol. 7. GIANCARLO ROTA, editor. Addison-Wesley Publishing Company. Massachusetts.Google Scholar
  14. 14.
    Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, vol. 15, n. 3, pp. 234–281.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Saaty, T. L. (1978). Exploring the interface between hierarchies, multiple objectives and fuzzy sets. Fuzzy Sets and Systems, vol.1, pp. 57–68.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill. New York.MATHGoogle Scholar
  17. 17.
    Saaty T. L. and Vargs L.G. (1982). The Logic of Priorities Applications in Business, Energy, Health, and Transportation. Kluwer-Nijhoff, Boston.Google Scholar
  18. 18.
    Saaty, T. L. (1986). Axiomatic Foundation of the Analytic Hierarchy Process. Management Sciences, 32, 841–855.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Saaty, T. L. (1988). Decision Making for Leaders. University of Pittsburgh, Pittsburgh.Google Scholar
  20. 20.
    Saaty, T. L. (1990). Eigenvector and Logarithmic Least Squares. European journal of operational research, 48, 156–160.MATHCrossRefGoogle Scholar
  21. 21.
    Voogd H. (1983). Multi-criteria evaluations for urban and regional planning, London Princeton Univ.Google Scholar
  22. 22.
    Yager, R.R. (1988). On Ordered Weighted Averaging Aggregation Operators in Multicriteria Decision Making In I.E.E.E., Transactions on Systems, Man, and Cybernetics, 18, no. 1, 183–190.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • Livia D’Apuzzo
    • 1
  • Gabriella Marcarelli
    • 2
  • Massimo Squillante
    • 2
  1. 1.Dipartimento di Costruzioni e Metodi Matematici in ArchitetturaUniversità di NapoliItaly
  2. 2.Dipartimento di Analisi dei Sistemi Economici e SocialiUniversità del SannioItaly

Personalised recommendations