Creating the Physical World ex nihilo? On the Quantum Vacuum and Its Fluctuations

  • Luciano Boi


A vacuum is a volume of space that is essentially empty of matter, such that its gaseous pressure is much less than standard atmospheric pressure. The root of the word vacuum is the Latin adjective vacuus which means“empty,” but space can never be perfectly empty [1, 2]. A perfect vacuum with a gaseous pressure of absolute zero is a philosophical concept that is never observed in practice, not least because quantum theory predicts that no volume of space can be perfectly empty in this way.


Black Hole Physical World Empty Space Vacuum Energy Quantum Electrodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D. Barrow: The Book of Nothing: Vacuums, Voids, and the Latest Ideas about the Origins of the Universe (Vintage, London 2002)Google Scholar
  2. 2.
    H. Genz: Die Entdeckung des Nichts. Leere and Fülle im Universum (Hanser, München 1994) (English edition: Nothingness: The Science of Empty Space. New York 1998)Google Scholar
  3. 3.
    I.J.R. Aitchison: ‘Nothing’s plenty’. The vacuum in modern quantum field theory. Contemp. Phys., 26 (1985) 333–391CrossRefGoogle Scholar
  4. 4.
    P.W. Milonni: The Quantum Vacuum. An Introduction to Quantum Electrodynamics (Academic Press, New York 1994)Google Scholar
  5. 5.
    P.A.M. Dirac: Théorie du positron. In: Rapport du 7e Conseil Solvay de Physique, Structure et Propriétés des Noyaux Atomiques (Gauthier-Villars, Paris 1933) pp. 203–12Google Scholar
  6. 6.
    W. Heisenberg: Bemerkungen zur Diracschen Theorie des Positrons. Zeit. Phys., 90 (1934) 209–231CrossRefGoogle Scholar
  7. 7.
    S. Saunders, H.R. Brown (Eds.): The Philosophy of Vacuum (Oxford University Press, Oxford 2002)Google Scholar
  8. 8.
    J.T. Cushing: Philosophical Concepts in Physics (Cambridge University Press, Cambridge 1998)Google Scholar
  9. 9.
    B. Pascal: Préface du Traité du vide (1651). In: Oeuvres complètes, t. 2. (GM Flammarion, Paris 1985)Google Scholar
  10. 10.
    L. Boi: Theories of space-time in modern physics. Synthese, 139 (2004) 429–489CrossRefGoogle Scholar
  11. 11.
    P.A.M. Dirac: Quantized Singularities in the Electromagnetic Field. Proc. Roy. Soc. A 133 (1931) 60–72CrossRefGoogle Scholar
  12. 12.
    R. Penrose: The Road to Reality. A Complete Guide to the Laws of the Universe (Vintage, London 2004)Google Scholar
  13. 13.
    C. Itzykson and J-B. Zuber: Quantum Field Theory (McGraw-Hill, Singapore 1988)Google Scholar
  14. 14.
    P.A.M. Dirac: The Principles of Quantum Mechanics (Clarendon, Oxford 1930)Google Scholar
  15. 15.
    W. Heisenberg: The Physical Principles of the Quantum Theory (University of Chicago Press, Chicago 1930)Google Scholar
  16. 16.
    R. Feynman: The character of physical laws (The MIT Press, Cambridge 1967)Google Scholar
  17. 17.
    H.E. Puthoff: Source of Vacuum Electromagnetic Zero-Point Energy. Phys. Rev. A 40(9) (1989) 4857–4862CrossRefGoogle Scholar
  18. 18.
    C. Beck: Spatio-Temporal Chaos and Vacuum Fluctuations of Quantized Fields. Advanced Series in Nonlinear Dynamics, Vol. 21. (World Scientific, Singapore 2002)Google Scholar
  19. 19.
    S.W. Hawking: Particle creation by black holes. Commun. Math. Phys., 43 (1975) 199–220CrossRefGoogle Scholar
  20. 20.
    H.B.G. Casimir: On the attraction between two perfectly conducting plates. Proc. Koninkl. Ned. Akad. Wetenschap B 51(7) (1948) 793–796Google Scholar
  21. 21.
    S. Kachru, R. Kallosh, A. Linde and S.P. Trivedi: de Sitter vacua in string theory. Phys. Rev. D 68(4) (2003) 046005Google Scholar
  22. 22.
    J.B. Hartle and S.W. Hawking: Wave function of the universe. Phys. Rev. D 28 (1983) 2960–2975Google Scholar
  23. 23.
    A. Vilenkin: Quantum creation of universes. Phys. Rev. D 30(2) (1984) 509–511Google Scholar
  24. 24.
    A. Vilenkin: Creation of universes from nothing. Phys. Lett. B 117(1–2) (1982) 25–28Google Scholar
  25. 25.
    B.S. DeWitt: Quantum gravity: the new synthesis. In: General relativity. An Einstein centenary survey. S.W. Hawking and W. Israel (eds.) (Cambridge University Press, Cambridge 1979) pp. 680–745Google Scholar
  26. 26.
    E.P. Tryon: Is the universe a vacuum fluctuation? Nature, 246 (1973) 396–397CrossRefGoogle Scholar
  27. 27.
    B. Allen: Quantum states in de Sitter space. Phys. Rev. D 32(12) (1985) 3136–3152Google Scholar
  28. 28.
    D. Atkatz and H. Pagels: Origin of the Universe as a Quantum Tunneling Event. Phys. Rev. D 25 (1982) 2065–2073CrossRefGoogle Scholar
  29. 29.
    L. Boi: Geometrization, Classification, and Unification in Mathematics and Theoretical Physics. In: Proceedings of the Albert Einstein Century International Conference. J-M. Alimi & A. Füzfa (eds.) (American Institute of Physics Publishers, 2006) 314–326Google Scholar
  30. 30.
    A.D. Sakharov: Vacuum Quantum Fluctuations in Curved Space and the Theory of Gravitation. Dokl. Akad. Nauk. SSSR, 12 (1968) 1040–1057Google Scholar
  31. 31.
    J. Schwinger: On gauge invariance and vacuum polarization. Phys. Rev., 82 (1951) 664–679CrossRefGoogle Scholar
  32. 32.
    J. Schwinger: Selected Papers on Quantum Electrodynamics (Dover, New York 1958)Google Scholar
  33. 33.
    J.A. Wheeler: Superspace and the Nature of Quantum Geometrodynamics. In: Battelle Rencontres. 1967 Lectures in Mathematics and Physics, C.M. DeWitt and J.A. Wheeler (eds.) (Benjamin, New York 1968) 242–307Google Scholar
  34. 34.
    H.B.G. Casimir and D. Polder: The Influence of Retardation on the London-van der Waals Forces. Phys. Rev., 73(4) (1948) 360–372CrossRefGoogle Scholar
  35. 35.
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten: Vacuum configurations for superstrings. Nucl. Phys. B 258 (1985) 46–74CrossRefGoogle Scholar
  36. 36.
    T.Yu. Cao: Conceptual Developments of 20th Century Physics (Cambridge University Press, Cambridge 1997)CrossRefGoogle Scholar
  37. 37.
    V. Weisskopf: Über die Selbstenergie des Elektrons. Zeit. Phys., 89 (1934) 27–39CrossRefGoogle Scholar
  38. 38.
    L. Boi: Geometrical and topological foundations of theoretical physics: from gauge theories to string program. Inter. J. Math. Mathem. Sci., 34 (2004) 1777–1836CrossRefGoogle Scholar
  39. 39.
    G. Veneziano: Quantum Geometric Origins of All Forces in String Theory. In: The Geometric Universe: Science, Geometry and the Work of Roger Penrose. S.A. Huggett et al. (eds.) (Oxford University Press, Oxford 1998)Google Scholar
  40. 40.
    R. Sorensen: Nothingness. In: Stanford Encyclopedia of Philosophy (Stanford 2006) 1–22Google Scholar
  41. 41.
    T.D. Lee: Particle Physics and Introduction to Field Theory (Harwood Academic Publishers, New York 1990)Google Scholar
  42. 42.
    R. Feynman: Space-time approach to quantum electrodynamics. Phys. Rev., 76 (1949) 769–789CrossRefGoogle Scholar
  43. 43.
    G. ’t Hooft: In search of the ultimate building blocks (Cambridge University Press, Cambridge 1997)Google Scholar
  44. 44.
    S. Coleman: Aspects of Symmetry. Selected Erice Lectures (Cambridge University Press, Cambridge 1985)Google Scholar
  45. 45.
    P. Hut and M.J. Rees: How stable is our vacuum. Nature, 302 (1983) 508–602CrossRefGoogle Scholar
  46. 46.
    E. Gunzig and S. Diner: Le Vide. Univers du Tout et du Rien (Editions Complexe, Bruxelles 1998)Google Scholar
  47. 47.
    M. Cassé: Du vide et de la création (Odile Jacob, Paris 1993)Google Scholar
  48. 48.
    P.W. Higgs: Broken Symmetries and the Mass of Gauge Bosons. Phys. Rev. Lett., 13 (1964) 508–509CrossRefGoogle Scholar
  49. 49.
    S. Weinberg: The cosmological constant. Rev. Mod. Phys., 61 (1989) 1–23CrossRefGoogle Scholar
  50. 50.
    S. Coleman: Why there is nothing rather than something: a theory of the cosmological constant. Nucl. Phys. B 310 (1988) 643–658CrossRefGoogle Scholar
  51. 51.
    S.W. Hawking and N. Turok: Open inflation without false vacua. Phys. Lett., 1998 [hep-th/9802030]Google Scholar
  52. 52.
    W. de Sitter: On the curvature of space. Proc. Kon. Ned. Acad. Wet., 20 (1917) 229–243Google Scholar
  53. 53.
    A.A. Starobinsky, Ya.B. Zel’Dovich: The spontaneous creation of the Universe. Sov. Sci. Rev. Sect. E 6(2) (1988) 103–144Google Scholar
  54. 54.
    A. Guth: The Inflationary Universe: The Quest for a New Theory of Cosmic Origins (Addison-Wesley, Reading 1997)Google Scholar
  55. 55.
    A. Linde: A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B 108 (1982) 389–412Google Scholar
  56. 56.
    A.H. Guth and D.I. Kaiser: Inflationary Cosmology: Exploring the Universe from the Smallest to the Largest Scales. Science, 307 (5711) (2005) 884–890CrossRefGoogle Scholar
  57. 57.
    G. Scharf: Vacuum stability in quantum field theory. Il Nuovo Cimento A 109(11) (1996) 1605–1607CrossRefGoogle Scholar
  58. 58.
    J.R. Gott: Creation of Open Universes from de Sitter Space. Nature, 295 (1982) 304–307CrossRefGoogle Scholar
  59. 59.
    E. Streeruwitz,: Vacuum fluctuations of a quantized scalar field in a Robertson-Walker universe. Phys. Rev. D 11(12) (1975) 3378–3383Google Scholar
  60. 60.
    Ya.B. Zel’Dovich: Cosmology and the early universe. In: General relativity. An Einstein centenary survey. S.W. Hawking & W. Israel (eds.) (CUP, Cambridge, 1979) 518–532Google Scholar
  61. 61.
    R. Feynman: QED: The strange theory of light and matter. (Princeton University Press, Princeton 1985)Google Scholar
  62. 62.
    L.B. Crowell: Quantum Fluctuations of Spacetime (World Scientific, Singapore 2005)CrossRefGoogle Scholar

Suggested readings

  1. A. Anderson and B. DeWitt: Does the Topology of Space Fluctuate?. In: Between Quantum and Cosmos. Studies and Essays in Honor of John Archibald Wheeler. W.H. Zurek, A. van der Merwe, W.A. Miller (eds.) (Princeton University Press, Princeton 1988) 74–88Google Scholar
  2. L. Boi: Topological structures in classical and quantum physics. JP J. Geom. Topol., 37 (2008) (to appear)Google Scholar
  3. R. Brandenberger: On the Spectrum of Fluctuations in an Effective Field Theory of Ekpyrotic Universe. Journal of High Energy Physics, 11 (2001) 1088–1126Google Scholar
  4. R. Brout, F. Englert and E. Gunzig: The Creation of the Universe as a Quantum Phenomenon. Annals of Phys (N.Y.), 115 (1978) 78–106CrossRefGoogle Scholar
  5. C. Callan and S. Coleman: Fate of the false vacuum. II. First quantum corrections. Phys. Rev. D 16 (1977) 1762–68Google Scholar
  6. S. Coleman: The Invariance of the Vacuum is the Invariance of the World. J. Math. Phys., 7 (1966) 787–812CrossRefGoogle Scholar
  7. V.A. Fock: Konfigurationsraum und zweite Quantelung. Zeit. Phys., 75 (1932) 622–647CrossRefGoogle Scholar
  8. B. Haisch, A. Rueda and Y. Dobyns. Inertial mass and the quantum vacuum fields. Ann. Phys., 10(5) (2001) 393–414CrossRefGoogle Scholar
  9. J. Hong, A. Vilenkin and S. Winitzki: Particle creation in a tunneling universe. Phys. Rev. D 68(2) (2003) 1103–1124Google Scholar
  10. S.K. Lamoreaux: Demonstration of the Casimir force in the 0.6 to 6 ìm Range. Phys. Rev. Lett., 78(1) (1997) 5–8CrossRefGoogle Scholar
  11. T.D. Lee and G.C. Wick: Vacuum stability and vacuum excitation in a spin-0 field theory. Phys. Rev. D 9 (1974) 2291–2316Google Scholar
  12. T. Levi-Civita: Realtà fisica di alcuni spazi normali del Bianchi. Rend. R. Acad. Lincei, 26 (1917) 519–531Google Scholar
  13. J. Maldacena: The illusion of gravity. Sci. Amer. Rep. (April 2007) 75–81Google Scholar
  14. T. Padmanabhan: Quantum conformal fluctuations and stationary states. Inter. J. Theor. Phys., 22(11) (1983) 1023–1036CrossRefGoogle Scholar
  15. R. Penrose: On gravity’s role in quantum state reduction. Gen. Rel. Grav., 28 (1996) 581–600CrossRefGoogle Scholar
  16. M. Redhead: Quantum field theory for philosophers. In: Proceedings of the Biennial Meeting of the Philosophy of Science Association. P.D. Asquith and T. Nickles (eds.), vol. 2 (1983) 57–99Google Scholar
  17. A. Rueda and B. Haisch: Gravity and the Quantum Vacuum Inertia Hypothesis. Ann. Phys., 14(8) (2005) 479–498CrossRefGoogle Scholar
  18. B. Russel: A critical exposition of the Philosophy of Leibniz. With a new introduction by J. G. Slater. (Routledge, London 1951)Google Scholar
  19. S. Sarangi and S-H.H. Tye: A Note on the Quantum Creation of Universes. (2003) hep-th/0603237Google Scholar
  20. Q. Smith: The Uncaused Beginning of the Universe. Philosophy of Science. 55(1) (1988) 39–57CrossRefGoogle Scholar
  21. D. Solomon: Gauge invariance and the vacuum state. Can. J. Phys., 76(2) (1998) 111–127CrossRefGoogle Scholar
  22. M.S. Turner and F. Wilczek: Is our vacuum metastable. Nature, 298 (1982) 633–637CrossRefGoogle Scholar
  23. A. Vilenkin: The quantum cosmology debate (1998) gr-qc/9812027Google Scholar
  24. F. Wilczek: La musica del vuoto. Indagine sulla natura della material (Di Renzo Editore, Roma 2007)Google Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • Luciano Boi
    • 1
  1. 1.École des Hautes Études en Sciences Sociales, Centre de Mathématiques Laboratoire de l’Univers et ses Théories (LUTH), Observatoire de Paris-MeudonEHESS-CAMSParisFrance

Personalised recommendations