Preservation of Vinegar Acetic Acid Bacteria

  • Bassirou Ndoye
  • Ilse Cleenwerck
  • Jacqueline Destain
  • Amadou Tidiane Guiro
  • Philippe Thonart


A starter culture is defined as a collection of microbial cells that are capable of initiating and completing a rapid fermentation process. The microorganisms used as starter cultures in industrial applications, such as lactic acid bacteria and yeasts, are usually conserved either in a frozen or a powdered form via the freeze-drying, spray-drying or fluidization processes (To and Etzel, 1997). With regard to acetic acid bacteria (AAB), three forms of starter culture are used in vinegar making:
  • Liquid inoculum used in the culture surface method or Orleans method, submerged method, or immobilization method (Ohmori et al.,1982).

  • Dried starter,as recently used by Sokollek et al.(1998)and Ndoye et al.(2007a) for submerged fermentation into Frings and Chansard acetators,respectively.

  • Vinegar made from wine,using mixed strains from raw materials (Gullo et al., 2006).


Lactic Acid Bacterium Starter Culture Acetic Acid Bacterium Spontaneous Fermentation Liquid Inoculum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blandino A, Caro I, Cantero D (1996) Effect of culture conditions on the aldehyde dehydrogenase activity of Acetobacter aceti cytoplasmatic extracts. Biotechnol Lett 18:63–68CrossRefGoogle Scholar
  2. Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149CrossRefGoogle Scholar
  3. Carvalho AS, Silva JHP, Teixeira P, Malcata FX, Gibbs P (2002) Survival of freeze drying Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants. Biotechnol Lett 24:1587–1591CrossRefGoogle Scholar
  4. De Ory I, Romero LE, Cantero D (2002) Optimum starting-up protocol of a pilot plant scale acetifier for vinegar production, J Food Eng 52:31–37CrossRefGoogle Scholar
  5. De Vuyst L (2000) Technology aspects related to the application of functional starter cultures. Food Technol Biotechnol 38:105–112Google Scholar
  6. Ebner H (1976) Essig. In: Ullmanns Enzyklopädie der technischen Chemie. Verlag Chemie, Weinheim, Vol 11:41–55Google Scholar
  7. Entani E, Ohmori S, Masai H, Suzuki KI (1985) Acetobacter polyoxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J Gen Appl Microbiol 31:475–490CrossRefGoogle Scholar
  8. Giudici P, Solieri L, Pulvirenti AM, Cassanelli S (2005) Strategies and perspectives for genetic improvement of wine yeasts. Appl Microbiol Biotechnol 66:622–628CrossRefGoogle Scholar
  9. Gullo M, Caggia C, De Vero L, Giudici P (2006) Characterization of acetic acid bacteria in traditional balsamic vinegar. Int J Food Microbiol 106:209–212CrossRefGoogle Scholar
  10. Holzapfel WH (1989) Industrialisation of mageu fermentation in South Africa. In: Steinkraus KH (ed) Industrialisation of Indigenous Fermented Foods. 285–328. Marcel Dekker, New YorkGoogle Scholar
  11. Holzapfel WH (2002) Appropriate starter culture technologies for small-scale fermentation in developing countries. Int J Food Microbio 75:197–212CrossRefGoogle Scholar
  12. Le Meste M, Simatos D (1990) La transition vitreuse: indices en technologie alimentaire. Ind Aliment Agric 107:5–11Google Scholar
  13. Le Meste M, Lorient D, Siamtos D (2002) L’eau dans aliments. Lavoisier Tec et Doc, ParisGoogle Scholar
  14. Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15:67–68CrossRefGoogle Scholar
  15. Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61: 3592–3597Google Scholar
  16. Muraoka H, Watabe Y, Ogasawara N (1982) Effect of oxygen deficiency on acid production and morphology of bacteria cells in submerged acetic fermentation by Acetobacter aceti. J Ferment Technol 60:171–180Google Scholar
  17. Ndoye B, Lebecque S, Dubois-Dauphin R, Tounkara L, Kere C, Guiro AT, Diawara B, Thonart P (2006) Thermoresistant properties of acetic acid bacteria isolated from tropical products of Sub-Saharan Africa and destined to industrial vinegar. Enzyme Microb Technol 39: 916–923CrossRefGoogle Scholar
  18. Ndoye B, Weekers F, Diawara B, Guiro AT, Thonart P (2007a) Survival and preservation after freeze drying process of thermoresistant acetic acid bacteria isolated from tropical products of Sub-Saharan Africa. J Food Eng 79:1374–1382CrossRefGoogle Scholar
  19. Ndoye B, Cleenwerck I, Engelbeen K, Dubois-Dauphin R, Guiro AT, Van Trappen S, Willems A, Thonart P (2007b) Acetobacter senegalensis sp. nov., a thermotolerant acetic acid bacterium isolated in Senegal (Sub-Saharan Africa) from mango fruit (Mangifera indica, L). Int J Syst Evol Microbiol 57:1576–1581CrossRefGoogle Scholar
  20. Ohmori S, Uozumi T, Beppu T (1982) Loss of acetic acid resistance and ethanol oxidizing ability in an Acetobacter strain. Agric Biol Chem 46:381–389Google Scholar
  21. Roos YH (1993) Water activity and physical state effects on amorphous food stability. J Food Process Preserv 16:433–447CrossRefGoogle Scholar
  22. Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3–16CrossRefGoogle Scholar
  23. Sablani SS, Kasapsis S, Rahman MS (2007) Evaluating water activity and glass transition concepts for food stability. J Food Eng 78:266–271CrossRefGoogle Scholar
  24. Schuck P, Bouhallab S, Durupt D, Vareille P, Humbert J-P, Martin M (2004) Séchage des lactosérums et derives: rôle du lactose et de la dynamique de l’eau. Lait 84:243–268CrossRefGoogle Scholar
  25. Sievers M, Teuber M (1995) The microbiology and taxonomy of Acetobacter europaeus in commercial vinegar production. J Appl Bacteriol (Symp Suppl) 79:84S–95SGoogle Scholar
  26. Sievers M, Sellmer S, Teuber M (1992) Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe. Syst Appl Microbiol 15:386–392Google Scholar
  27. Sokollek SJ, Hammes WP (1997) Description of a starter culture preparation for vinegar fermentation. Syst Appl Microbiol 20:481–491Google Scholar
  28. Sokollek S, Hertel C, Hammes W (1998) Cultivation and preservation of vinegar bacteria. J Biotechnol 60:195–206CrossRefGoogle Scholar
  29. Sow M, Dubois-Dauphin R, Roblain D, Guiro AT, Thonart P (2005) Polyphasic identification of a new thermotolerant species of lactic acid bacteria isolated from chicken faeces. Afr J Biotechnol 4:195–206Google Scholar
  30. To BCS, Etzel MR (1997) Survival of Brevibacterium linens (ATCC 9174) after spray drying, freeze drying or freezing. J Food Sci 62:167–170CrossRefGoogle Scholar
  31. Turner S, Senaratna T, Touchell D, Bunn E, Dixon K, Tan B (2001) Stereochemical arrangement of hydroxyl groups in sugar and polyalcohol molecules as an important factor in effective cryopreservation. Plant Sci 160:489–497CrossRefGoogle Scholar
  32. Ziadi M, Touhami Y, Achour M, Thonart P, Hamdi M (2005) The effect of heat stress on freeze-drying and conservation of Lactococcus. Biochem Eng J 24:141–145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • Bassirou Ndoye
    • 1
  • Ilse Cleenwerck
    • 2
  • Jacqueline Destain
    • 3
  • Amadou Tidiane Guiro
    • 4
  • Philippe Thonart
    • 5
  1. 1.Faculté Universitaire des Sciences Agronomiques de GemblouxUnité de BioindustriesGemblouxBelgium
  2. 2.BCCM/LMG Bacteria Collection, Laboratory of MicrobiologyGhent UniversityGhentBelgium
  3. 3.Faculté Universitaire des Sciences Agronomiques de GemblouxUnité de BioindustriesGemblouxBelgium
  4. 4.Institut de Technologie Alimentaire de DakarRoute des Péres MaristesDakarSénégal
  5. 5.Faculté Universitaire des Sciences Agronomiques de GemblouxUnité de BioindustriesGemblouxBelgium

Personalised recommendations