Skip to main content

Plane-Wave Admittance Method and its Applications to Modelling Photonic Crystal Structures

  • Chapter
Photonic Crystals: Physics and Technology

Abstract

This chapter presents the mathematical basis of the plane-wave admittance method (PWAM), which is a combination of the method of lines and plane-wave expansion. In the first part of the chapter the most important equations are derived and the used admittance transfer procedure is reviewed. In the second part we show the examples of modelling photonic-crystals-based vertical-cavity surface-emitting lasers with PWAM. We analyse the resonant wavelength and modal losses as a function of photonic crystal etching depth. Next we discuss the photonic crystal parameters most suitable for obtaining single-mode regime. Finally, we consider the possibilities of using photonic crystals for stabilisation of the emitted-light polarisation and suggest a new design of birefringent and dichroic VCSEL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dems M., Kotynski R., Panajotov K.: Plane-wave admittance method — a novel approach for determining the electromagnetic modes in photonic structures. Opt. Express 13, 3196–3207 (2005)

    Article  ADS  Google Scholar 

  2. Dems M.: Plane-wave admittance method and its applications to modeling semiconductor lasers and planar photonic-crystal structures. Ph.D. thesis, Technical University of Lodz (2007)

    Google Scholar 

  3. Danner A.J., Raftery Jr. J.J., Yokouchi N., Choquette K.D.: Transverse modes of photonic crystal vertical-cavity lasers. Appl. Phys. Lett. 84, 1031–1033 (2004)

    Article  ADS  Google Scholar 

  4. Dreher A., Pregla R.: Analysis of planar waveguides with the method of lines and absorbing boundary conditions. IEEE Microwave Guided Wave Lett. 1, 239–241 (1992)

    Google Scholar 

  5. Helfert S.F., Barcz A., Pregla R.: Three-dimensional vectorial analysis of waveguide structures with the method of lines. Opt. Quantum Electron. 35, 381–394 (2003)

    Article  Google Scholar 

  6. Sacks Z.S., Kingsland D.M., Lee R., Lee J.F.: A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans. Antennas and Propagation 43, 1460–1463 (1995)

    Article  ADS  Google Scholar 

  7. Berenger J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Dems M., Panajotov K.: Modeling of single-and multimode photonic-crystal planar wave-guides with plane-wave admittance method. Appl. Phys. B 89, 19–23 (2007)

    Article  ADS  Google Scholar 

  9. Kotynski R., Dems M., Panajotov K.: Waveguiding losses of micro-structured fibres-plane wave method revisited. Opt. Quantum Electron. 39, 469–479 (2007)

    Article  Google Scholar 

  10. Birks T.A., Knight J.C., Russell P.S.J.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  11. Knight J.C., Russell P.S.J.: Applied optics: New ways to guide light. Science 296, 276–277 (2002)

    Article  Google Scholar 

  12. Conradi O., Helfert S.F., Pregla R.: Comprehensive modeling of vertical-cavity laser-diodes by the method of lines. IEEE J. Quantum Electron. 37, 928–935 (2001)

    Article  ADS  Google Scholar 

  13. Press W., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York, second edn. (1992)

    Google Scholar 

  14. Taflove A., Hagness S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artec House Inc., Boston, second edn. (2000)

    MATH  Google Scholar 

  15. Ziolkowski R.W.: Time-derivative Lorentz materials and their utilization as electromagnetic absorbers. Phys Rev. E 55, 1630–1639 (1996)

    Google Scholar 

  16. Chew W.C., Jin J.M., Michielssen E.: Complex coordinate stretching as a generalized absorbing boundary condition. Microwave Opt. Technol. Lett. 15, 363–369 (1997)

    Article  Google Scholar 

  17. Dems M., Czyszanowski T., Panajotov K.: Numerical analysis of high Q-factor photonic-crystal VCSELs with plane-wave admittance method. Opt. Quantum Electron. 39, 419–426 (2007)

    Article  Google Scholar 

  18. Czyszanowski T., Dems M., Thienpont H., Panajotov K.: Modal behavior of photonic-crystal vertical-cavity surface-emitting diode laser analyzed with plane wave admittance method. Opt. Quantum Electron. 39, 469–479 (2007)

    Article  Google Scholar 

  19. Czyszanowski T., Dems M., Thienpont H., Panajotov K.: Optimal radii of photonic crystal holes within DBR mirrors in long wavelength VCSEL. Opt. Express 15, 1301–1306 (2007)

    Article  ADS  Google Scholar 

  20. Czyszanowski T., Dems M., Panajotov K.: Impact of the hole depth on the modal behaviour of long wavelength photonic crystal VCSELs. J. Phys. D: Appl. Phys. 40, 2732–2735 (2007)

    Article  ADS  Google Scholar 

  21. Czyszanowski T., Dems M., Panajotov K.: Optimal parameters of photonic-crystal vertical-cavity surface-emitting diode lasers. IEEE J. Lightwave Techn. 25, 2331–2336 (2007)

    Article  ADS  Google Scholar 

  22. Yokouchi N., Danner A.J., Choquette K.D.: Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 9, 1439–1445 (2003)

    Article  Google Scholar 

  23. Danner A.J., Raftery Jr. J.J., Leisher P.O., Choquette K.D.: Single mode photonic crystal vertical vavity lasers. Appl. Phys. Lett. 88, 091, 114 (2006)

    Article  Google Scholar 

  24. Leisher P.O., Danner A.J., Choquette K.D.: Single-mode 1.3 m photonic crystal vertical-cavity surface-emitting laser. IEEE Photon. Technol. Lett. 18, 2156–2158 (2006)

    Article  ADS  Google Scholar 

  25. Czyszanowski T., Dems M., Panajotov K.: Single mode condition and modes discrimination in photonic-crystal 1.3 m A1InGaAs/InP VCSEL. Opt. Express 15, 5604–5609 (2007)

    Article  ADS  Google Scholar 

  26. Chang-Hasnain C.J.H.J.P., Hasnain G., Von Lehmen A.C., Florez L.T., Stoffel N.G.: Polarization and transverse mode characteristics of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 27, 1402–1408 (1991)

    Article  ADS  Google Scholar 

  27. Choquette K.D., Schneider R.P., Lear K.L., Leibenguth R.E.: Gain-dependent polarization properties of vertical-cavity lasers. IEEE J. Sel. Top. Quantum Electron. 1, 661–666 (1995)

    Article  Google Scholar 

  28. Panajotov K., Danckaert J., Verschaffelt G., Peeters M., Nagler B., Albert J., Ryvkin B., Thienpont H., Veretennicoff I.: Polarization behavior of vertical-cavity surface-emitting lasers: Experiments, models and applications. Proc. AIP 560, 403–417 (2000)

    Article  Google Scholar 

  29. Sciamanna M., Panajotov K., Thienpont H., Veretennicoff I., Mégret P., Blondel M.: Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers. Opt. Lett. 28, 1543–1545 (2003)

    Article  ADS  Google Scholar 

  30. Gatare I., Sciamanna M., Buessa J., Thienpont H., Panajotov K.: Nonlinear dynamics accompanying polarization switching in vertical-cavity surface-emitting lasers with orthogonal optical injection. Appl. Phys. Lett. 88, 101, 106 (2006)

    Google Scholar 

  31. San Miguel M., Feng O., Moloney J.V.: Light polarization dynamics in surface-emitting semiconductor lasers. Phys Rev. A 52, 1728–1739 (1996)

    Article  ADS  Google Scholar 

  32. Martin-Regalado J., Prati F., San Miguel M., Abraham N.B.: Polarization properties of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 33, 765–783 (1997)

    Article  ADS  Google Scholar 

  33. Mueller R., Klehr A., Valle A., Sarma J., Shore K.A.: Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes. Semi-cond. Sci. Technol. 11, 587–596 (1996)

    Article  ADS  Google Scholar 

  34. Panajotov K., Ryvkin B., Danckaert J., Peeters M., Thienpont H., Veretennicoff I.: Polarization switching in VCSEL’s due to thermal lensing. IEEE Photon. Technol. Lett. 10, 6–8 (1998)

    Article  ADS  Google Scholar 

  35. Niskiyama N., Arai M., Shinada S., Azuchi M., Miyamoto T., Koyama F., Iga K.: Highly strained GaInAs-GaAs quantum-well vertical-cavity surface-emitting laser on GaAs (311)B substrate for stable polarization operation. IEEE J. Sel. Top. Quantum Electron. 7, 242–248 (2001)

    Article  Google Scholar 

  36. Jansen van Doom A., van Exter M., Woerdman J.: Strain-induced birefringence in vertical-cavity semiconductor lasers. IEEE J. Quantum Electron. 34, 700–706 (1998)

    Article  ADS  Google Scholar 

  37. Panajotov K., Nagler B., Verschaffelt G., Georgievski A., Thienpont H., Danckaert J., Veretennicoff I.: Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 77, 1590–1592 (2000)

    Article  ADS  Google Scholar 

  38. Choquette K.D., Leibenguth R.: Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries. IEEE Photon. Technol. Lett. 6, 40–42 (1994)

    Article  ADS  Google Scholar 

  39. Ortsiefer M., Shau R., Zigldrum M., Böhm G., Köhler F., Amann M.C.: Submilliamp long-wavelength InP-based vertical-cavity surface-emitting laser with stable linear polarisation. Electron. Lett. 36, 1124–1126 (2000)

    Article  Google Scholar 

  40. Mukaihara T., Ohnoki N., Hayashi Y., Hatori N., Koyama F., Iga K.: Polarization control of vertical-cavity surface emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector. IEEE J. Sel. Top. Quantum Electron. 1, 667–673 (1995)

    Article  Google Scholar 

  41. Ser J.H., Ju Y.G., Shin J.H., Lee Y.H.: Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings. Appl. Phys. Lett. 21, 2769–2771 (1995)

    Article  ADS  Google Scholar 

  42. Berseth C.A., Dwir B., Utke I., Pier H., Rudra A., Iakovlev V.P., Kapon E.: Vertical cavity surface emitting lasers incorporating structured mirrors patterned by electron-beam lithography. J. Vac. Sci. Technol. B 17, 3222–3225 (1999)

    Article  Google Scholar 

  43. Debernardi P., Ostermann J.M., Feneberg M., Jalics C., Michalzik R.: Reliable polarization control of VCSELs through monolithically integrated surface gratings: A comparative theoretical and experimental study. IEEE J. Sel. Top. Quantum Electron. 11, 107–116 (2005)

    Article  Google Scholar 

  44. Song D.S., Lee Y.J., Choi H.W., Lee Y.H.: Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers. Appl. Phys. Lett. 82, 3182–3184 (2003)

    Article  ADS  Google Scholar 

  45. Steel M.J., White T.P., Martijn de Sterke C., McPhedran M.C., Botten L.C.: Symmetry and degeneracy in microstructured optical fibers. Opt. Lett. 26, 488–450 (2001)

    Article  ADS  Google Scholar 

  46. Urbanczyk W., Szuplak M., Statkiewicz G., Martynkien T., Olszewski J., Wojcik J., Mergo P., Makara M., Nasilowski T., Berghmans F., Thienpont H.: Polarizing properties of photonic crystal fibers. In: International Conference on Transparent Optical Networks, ICTON 2006, vol. 2, pp. 59–63 (2006)

    Article  Google Scholar 

  47. Ortigosa-Blanch A., Knight J.C., Wadsworth W.J., Arriaga J., Mangan B.J., Birks T.A., Russell P.S.J.: Highly birefringent photonic crystal fibers. Opt. Lett. 25, 1325–1327 (2000)

    Article  ADS  Google Scholar 

  48. Hansen T.P., Broeng J., Libori S.E.B., Knudsen E., Bjarklev A., Jensen J.R., Simonsen H.: Highly birefringent index-guiding photonic crystal fibers. IEEE Photon. Technol. Lett. 13, 588–590 (2001)

    Article  ADS  Google Scholar 

  49. Szpulak M., Olszewski J., Martynkien T., Urbanczyk W., Wojcik J.: Polarizing photonic crystal fibers with wide operation range. Opt. Commun 239, 91–97 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Italia

About this chapter

Cite this chapter

Dems, M., Czyszanowski, T., Kotyński, R., Panajotov, K. (2008). Plane-Wave Admittance Method and its Applications to Modelling Photonic Crystal Structures. In: Sibilia, C., Benson, T.M., Marciniak, M., Szoplik, T. (eds) Photonic Crystals: Physics and Technology. Springer, Milano. https://doi.org/10.1007/978-88-470-0844-1_14

Download citation

Publish with us

Policies and ethics