Skip to main content

Abstract

Spatial transversal resolution of scanning near-field optical microscopes depends on the distance between a sample and the aperture of a tip and aperture diameter. When the tip aperture — sample distance is kept constant due to the shear-force tuning fork technique then the detectable amount of light passing through the probe decides on the smallest aperture diameter. Energy throughput is limited by the aperture diameter which is smaller than the cut-off diameter D = 0.6λ/n of modes guided in a tapered fibre. Beyond the cut-off the propagation vector becomes imaginary and only evanescent waves reach the orifice. In simulations using the finite-difference time-domain method we develop a concept of enhanced light transmission through tapered-fibre metal-coated corrugated tips. Corrugation of the interface between the fibre core and metal coating, which is structured into parallel grooves of different profiles curved inward the core, introduces efficient photon-plasmon coupling. Corrugated tips may lead to better than 20 nm SNOM resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bethe, H.A.: Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Bouwkamp, C.J.: On Bethe’s theory of diffraction by small holes. Philips Res. Rep. 5, 321–332 (1950).

    MathSciNet  Google Scholar 

  3. Leviatan, Y.: Study of near-zone fields of a small aperture. J. Appl. Phys. 60, 1577–1583 (1986).

    Article  ADS  Google Scholar 

  4. Synge, E.H.: A suggested method for extending the microscopic resolution into the ultramicroscopic region. Phil. Mag. 6, 356 (1928).

    Google Scholar 

  5. Ash, E.A. and Nichols, G.: Super-resolution aperture scanning microscope. Nature 237, 510–512(1972).

    Article  ADS  Google Scholar 

  6. Pohl, D.W., Denk, W. and Lanz, M.: Optical stethoscopy: Image recording with resolution μ/20. Appl. Phys. Lett. 44, 651–653 (1984).

    Article  ADS  Google Scholar 

  7. Dürig, U., Pohl, D.W. and Rohner, F.: Near-field optical-scanning microscopy. J. Appl. Phys. 59,3318–3327(1986).

    Article  Google Scholar 

  8. Sakoda, K.: Optical properties of photonic crystals. Springer, Berlin (2005).

    Google Scholar 

  9. Novotny, L. and Hecht, B.: Principles of nano-optics. Cambridge University Press, Cambridge (2006).

    Google Scholar 

  10. Zayats, A.V. and Smolyaninov, I.I.: Near-field photonics: surface plasmon polaritons and localized surface plasmons. J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003).

    Article  ADS  Google Scholar 

  11. Zayats, A.V., Smolyaninov, I.I. and Maradudin, A.A.: Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005).

    Article  ADS  Google Scholar 

  12. Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, New York (2007).

    Google Scholar 

  13. Hopman, W.C.L., Stoffer, R. and de Ridder, R.M.: High-resolution measurement of resonant wave patterns by perturbing the evanescent field using a nanosized probe in a transmission scanning near-field optical microscopy configuration. J. Lightwave Technol. 25, 1811–1818 (2007).

    Article  ADS  Google Scholar 

  14. Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T. and Wolff, P.A.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  ADS  Google Scholar 

  15. Lezec, H.J., Degiron, A., Devaux, E., Linke, R.A., Martin-Moreno, L., Garcia-Vidal, F.J. and Ebbesen, T.W.: Beaming light from a sub-wavelength aperture. Science 297, 820 (2002).

    Article  ADS  Google Scholar 

  16. Genet, C. and Ebbesen, T.W.: Light in tiny holes. Nature 445, 39–46 (2007).

    Article  ADS  Google Scholar 

  17. Kim, J.H. and Song, K.B.: Recent progress of nano-technology with NSOM. Micron 38, 409–426 (2007).

    Article  Google Scholar 

  18. Antosiewicz, T.J. and Szoplik, T.: Description of near-and far-field light emitted from a metal-coated tapered fibre tip. Opt. Express 15, 7845–7852 (2007).

    Article  ADS  Google Scholar 

  19. Antosiewicz, T.J. and Szoplik, T.: Corrugated metal-coated tapered tip for scanning near-field optical microscope. Opt. Express 15, 10920–10928 (2007).

    Article  ADS  Google Scholar 

  20. Bravo-Abad, J., Fernandez-Dominguez, A. I., Garcia-Vidal, F.J. and Martin-Moreno, L.: Theory of extraordinary transmission of light through quasiperiodic arrays of sub-wavelength holes. Phys. Rev. Lett. 99, 203905 (2007).

    Article  ADS  Google Scholar 

  21. Shin, D.J., Chavez-Pirson, A. and Lee, Y.H.: Multipole analysis of the radiation from near-field optical probes. Opt. Lett. 25, 171–173 (2000).

    Article  ADS  Google Scholar 

  22. Drezet, A., Woehl, J.C. and Huant, S.: Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field optical microscopy. Phys. Rev. E 65, 046611(2002).

    Article  ADS  Google Scholar 

  23. Arnoldus, H.F. and Foley, J.T.: Highly directed transmission of multipole radiation by an interface. Opt. Commun. 246, 45–56 (2005).

    Article  ADS  Google Scholar 

  24. Obermüller, C. and Karrai, K.: Far field characterization of diffracting circular aperture. Appl. Phys. Lett. 67, 3408–3410 (1995).

    Article  ADS  Google Scholar 

  25. Drezet, A., Huant, S. and Woehl, J.C.: In situ characterization of optical tips using single fluorescent nanobeads. J. Lumin. 107, 176–181 (2004).

    Article  Google Scholar 

  26. Durkan, C. and Shvets, I.V.: Polarization effects in reflection-mode scanning near-field optical microscopy. J. Appl. Phys. 83, 1837–1843 (1998).

    Article  ADS  Google Scholar 

  27. Gademann, A., Shvets, I.V. and Durkan, C.: Study of polarization-dependant energy coupling between nearfield optical probe and mesoscopic metal structure. J. Appl. Phys. 95, 3988–3993 (2004).

    Article  ADS  Google Scholar 

  28. Wang, Z., Cai, X., Chen, Q. and Li L.: Optical properties of metal-dielectric multilayers in the near UV region. Vacuum 80, 438–443 (2006).

    Article  Google Scholar 

  29. Novotny, L. and Hafner, C.: Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys. Rev. E. 50, 4094–4106 (1994).

    Article  ADS  Google Scholar 

  30. Valaskovic, G.A., Holton, M. and Morrison, G.H.: Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes. Appl. Opt. 34, 1215 (1995).

    Article  ADS  Google Scholar 

  31. Yatsui, T., Kourogi, M. and Ohtsu, M.: Highly efficient excitation of optical near-field on an apertured fiber probe with an asymmetric structure. Appl. Phys. Lett. 71, 1756–1758 (1997).

    Article  ADS  Google Scholar 

  32. Yatsui, T., Kourogi, M. and Ohtsu, M.: Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure. Appl. Phys. Lett. 73, 2090–2092 (1998).

    Article  ADS  Google Scholar 

  33. Kuznetsova, T.I. and Lebedev, V.S.: Transmission of visible and near-infrared radiation through a near-field silicon probe. Phys. Rev. B 70, 035107 (2004).

    Article  ADS  Google Scholar 

  34. Jin, E.X. and Xu, X.: Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture. Appl. Phys. Lett. 86, 111106 (2005).

    Article  ADS  Google Scholar 

  35. Tanaka, K., Tanaka, M. and Sugiyama, T.: Creation of strongly localized and strongly enhanced optical nearfield on metallic probe-tip with surface plasmon polaritons. Opt. Express 14, 832–846 (2006).

    Article  ADS  Google Scholar 

  36. Adam, P.M., Royer, P., Laddada, R. and Bijeon, J.L.: Apertureless near-field optical microscopy: Influence of the illumination conditions on the image contrast. Appl. Opt. 37, 1814–1819(1998).

    Article  ADS  Google Scholar 

  37. Hecht, B., Bielefeld, H., Pohl, D.W., Novotny, L. and Heinzelmann, H.: Influence of detection conditions on near-field optical imaging. J. Appl. Phys. 84, 5873–5882 (1998).

    Article  ADS  Google Scholar 

  38. Verhagen, E., Polman, A. and Kuipers, L.: Nanofusing in laterally tapered palsmonic waveguides. Opt. Express 16, 45–57 (2008).

    Article  ADS  Google Scholar 

  39. Novotny, L., Pohl, D. and Hecht, B.: Scanning near-field optical probe with ultrasmall spot size. Opt. Lett. 20, 970–972 (1995).

    Article  ADS  Google Scholar 

  40. Ashino, M. and Ohtsu, M.: Fabrication and evaluation of a localized plasmon resonance probe for near-field optical microscopy/spectroscopy. Appl. Phys. Lett. 72, 1299–1301 (1998).

    Article  ADS  Google Scholar 

  41. Janunts, N.A., Baghdasaryan, K.S., Nerkararyan, K.V and Hecht, B.: Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fibre tip. Opt. Commun. 253, 118–124(2005).

    Article  ADS  Google Scholar 

  42. Ding, W., Andrews, S.R. and Maier, S.A.: Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fibre tip. Phys. Rev. A 75, 063822 (2007).

    Article  ADS  Google Scholar 

  43. Maier, S.A., Andrews, S.R., Martin-Moreno, L. and Garcia-Vidal, F.J.: Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 97, 176805 (2006).

    Article  ADS  Google Scholar 

  44. Baida, F.I., Van Labeke, D. and Guizal, B.: Enhanced confined light transmission by single sub-wavelength apertures in metallic films. Appl. Opt. 42, 6811–6815 (2003).

    Article  ADS  Google Scholar 

  45. Martín-Moreno, L., García-Vidal, F.J., Lezec, H.J., Degiron, A. and Ebbesen, T.W.: Theory of highly directional emission from a single sub-wavelength aperture surrounded by surface corrugations. Phys. Rev. Lett. 90, 167401 (2003).

    Article  ADS  Google Scholar 

  46. Lazarev, A., Fang, N., Luo, Q. and Zhang, X.: Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching. Rev. Sci. Instrum. 74, 3679–3683 (2003).

    Google Scholar 

  47. Yang, J., Zhang, J., Li, Z. and Gong, Q.: Fabrication of high-quality SNOM probes by pre-treating the fibres before chemical etching. J. Microsc. 228, 40–44 (2007).

    Article  MathSciNet  Google Scholar 

  48. Matsumoto T., Ichimura T., Yatsui T., Kourogi M., Saiki T. and Ohtsu M.: Fabrication of a near-field optical fiber probe with a nanometric metallized protrusion. Opt. Rev. 5, 369–373 (1998).

    Article  Google Scholar 

  49. Mononobe, S., Saiki, T., Suzuki, T., Koshihara, S. and Ohtsu, M.: Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber. Opt. Commun. 146, 45–48 (1998).

    Article  ADS  Google Scholar 

  50. Haber, L.H., Schaller, R.D., Johnson, J.C. and Saykally, R.J.: Shape control of near-field probes using dynamic meniscus etching. J. Microsc. 214, 27–35 (2004).

    Article  MathSciNet  Google Scholar 

  51. Baida, F.I., Van Labeke, D. and Pagani, Y.: Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes. Opt. Commun. 225, 241–252 (2003).

    Article  ADS  Google Scholar 

  52. Baida, F.I., Belkhir, A., Van Labeke, D. and Lamrous, O.: Sub-wavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes. Phys. Rev. B 74, 205419 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Italia

About this chapter

Cite this chapter

Antosiewicz, T.J., Marciniak, M., Szoplik, T. (2008). On SNOM Resolution Improvement. In: Sibilia, C., Benson, T.M., Marciniak, M., Szoplik, T. (eds) Photonic Crystals: Physics and Technology. Springer, Milano. https://doi.org/10.1007/978-88-470-0844-1_12

Download citation

Publish with us

Policies and ethics