Demyelinating Diseases - I

  • Kelly K. Koeller


The oligodendrocyte, predominantly found in the white matter of the brain, is the cell responsible for the production of myelin. As a general rule, demyelinating diseases result from either attacks on this cell or failure of the cell to regenerate under normal conditions. Consequently, a focal or diffuse loss of myelin occurs. Multiple sclerosis (MS) is the prototypical white matter disease. Many other diseases may mimic its appearance on imaging studies. While not an exhaustive list, this review highlights the important imaging manifestations of these demyelinating diseases that allow more specific diagnosis.


Multiple Sclerosis White Matter Progressive Multifocal Leukoencephalopathy Demyelinating Disease Progressive Multifocal Leukoencephalopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hauser SL (1994) Multiple sclerosis and other demyelinating disease. In: Isselbacher KJ, Graunwald E, Wilson JD et al (eds) Harrison’s principle of internal medicine. McGraw-Hill, New York, pp 2287–2295Google Scholar
  2. 2.
    Farlow MR, Bonine JM (1993) Clinical and neuropathological features of multiple sclerosis. Neuroradiol Clin North Am 3:213–228Google Scholar
  3. 3.
    Trobe JD (1994) High-dose corticosteroid regimen retards development of multiple sclerosis in optic neuritis treatment trial. Arch Ophthalmol 112:35–36PubMedGoogle Scholar
  4. 4.
    McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127PubMedCrossRefGoogle Scholar
  5. 5.
    Grossman RI, McGowan JC (1998) Perspective of multiple sclerosis. AJNR Am J Neuroradiol 19:1251–1265PubMedGoogle Scholar
  6. 6.
    Wolinsky JS (2003) The diagnosis of primary progressive multiple sclerosis. J Neurol Sci 206:145–152PubMedCrossRefGoogle Scholar
  7. 7.
    Niebler G, Harris T, Davis T, Roos K (1992) Fulminant multiple sclerosis. AJNR Am J Neuroradiol 13:1547–1551PubMedGoogle Scholar
  8. 8.
    Matiello M, Jacob A, Wingerchuk D, Weinshenker B (2007) Neuromyelitis optica. Curr Opin Neurol 20:255–260PubMedCrossRefGoogle Scholar
  9. 9.
    Jacob A, Matiello M, Wingerchuk D et al (2007) Neuromyelitis optica: changing concepts. J Neuroimmunol 187:126–138PubMedCrossRefGoogle Scholar
  10. 10.
    Gharagozloo AM, Poe LB, Collins GH (1994) Antemortem diagnosis of Balo concentric sclerosis: correlative MR imaging and pathologic features. Radiology 191:817–819PubMedGoogle Scholar
  11. 11.
    Barkhof F, Scheltens P, Frequin ST et al (1992) Relapsing-remitting multiple sclerosis: sequential enhanced MR imaging vs clinical findings in determining disease activity. AJR Am J Roentgenol 159:1041–1047PubMedGoogle Scholar
  12. 12.
    Nesbit GM, Forbes GS, Scheithauer BW et al (1991) Multiple sclerosis: histopathologic and MR and/or CT correlation in 37 cases at biopsy and three cases at autopsy. Radiology 180:467–474PubMedGoogle Scholar
  13. 13.
    Horowitz AL, Kaplan RD, Grewe G et al (1989) The ovoid lesion: a new MR observation in patients with multiple sclerosis. AJNR Am J Neuroradiol 10:303–305PubMedGoogle Scholar
  14. 14.
    Gean-Marton AD, Vezina LG, Marton KI et al (1991) Abnormal corpus callosum: a sensitive and specific indicator of multiple sclerosis. Radiology 180:215–221PubMedGoogle Scholar
  15. 15.
    Hashemi RH, Bradley WG, Chen D-Y et al (1995) Suspected multiple sclerosis: MR imaging with a thin-section fast FLAIR pulse sequence. Radiology 196:505–510PubMedGoogle Scholar
  16. 16.
    Stevenson V, Parker G, Barker G et al (2000) Variations in T1 and T2 relaxation times of normal appearing white matter and lesions in multiple sclerosis. J Neurol Sci 178:81–87PubMedCrossRefGoogle Scholar
  17. 17.
    Simon J, Li D, Traboulsee A et al (2006) Standardized MR imaging protocol for multiple sclerosis: consortium of MS centers consensus guidelines. AJNR Am J Neuroradiol 27:455–461PubMedGoogle Scholar
  18. 18.
    Miller D, Thompson AJ, Filippi M (2003) Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J Neurol 250:1407–1419PubMedCrossRefGoogle Scholar
  19. 19.
    Dagher AP, Smirniotopoulous JG (1996) Tumefactive demyelinating lesions. Neuroradiology 38:560–565PubMedCrossRefGoogle Scholar
  20. 20.
    Grossman RI, Gonzalez-Scarano F, Atlas SW et al (1986) Multiple sclerosis: gadolinium enhancement in MR imaging. Radiology 161:721–725PubMedGoogle Scholar
  21. 21.
    Ge Y, Grossman RI, Udupa JK et al (2000) Brain atrophy in relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis: longitudinal quantitative analysis. Radiology 214:665–670PubMedGoogle Scholar
  22. 22.
    Dietemann JL, Beigelman C, Rumbach L et al (1988) Multiple sclerosis and corpus callosum atrophy: relationship of MRI findings to clinical data. Neuroradiology 30:478–480PubMedCrossRefGoogle Scholar
  23. 23.
    Mehta RC, Pike GB, Enzmann DR (1996) Measure of magnetization transfer in multiple sclerosis demyelinating plaques, white matter ischemic lesions, and edema. AJNR Am J Neuroradiol 17:1051–1055PubMedGoogle Scholar
  24. 24.
    Grossman RI, Lenkinski RE, Ramer KN et al (1992) MR proton spectroscopy in multiple sclerosis. AJNR Am J Neuroradiol 13:1535–1543PubMedGoogle Scholar
  25. 25.
    Falini A, Calabrese G, Filippi MG et al (1998) Benign versus secondary-progressive multiple sclerosis: the potential role of proton MR spectroscopy in defining the nature of disability. AJNR Am J Neuroradiol 19:223–229PubMedGoogle Scholar
  26. 26.
    Singh S, Alexander M, Korah IP (1999) Acute disseminated encephalomyelitis: MR imaging features. AJR Am J Roentgenol 173:1101–1107PubMedGoogle Scholar
  27. 27.
    Whiteman M, Post MJ, Berger JR et al (1993) Progressive multifocal leukoencephalopathy in 47 HIV-seropositive patients: neuroimaging with clinical and pathologic correlation. Radiology 187:233–240PubMedGoogle Scholar
  28. 28.
    Thurner M, Post M, Rieger A et al (2001) Initial and followup MR imaging findings in AIDS-related progressive multifocal leukoencephalopathy treated with highly active antiretroviral therapy. AJNR Am J Neuroradiol 22:977–984Google Scholar
  29. 29.
    McArthur JC, Sacktor N, Seines O (1999) Human immunodeficiency virus-associated dementia. Semin Neurol 19:105–111CrossRefGoogle Scholar
  30. 30.
    Izquierdo G, Quesada MA, Chacon J, Martel J (1992) Neuroradiologic abnormalities in Marchiafava-Bignami disease of benign evolution. Eur J Radiol 15:71–74PubMedCrossRefGoogle Scholar
  31. 31.
    Zuccoli G, Galluci M, Capellades J et al (2007) Wernicke encephalopathy: MR findings at clinical presentation in twentysix alcoholic and nonalcoholic patients. AJNR Am J Neuroradiol 28:1328–1331PubMedCrossRefGoogle Scholar
  32. 32.
    Ruzek, KA, Campeau N, Miller G (2004) Early diagnosis of central pontine myelinolysis with diffusion-weighted imaging. AJNR Am J Neuroradiol 25:210–213PubMedGoogle Scholar
  33. 33.
    Miller GM, Baker HL, Okazaki H, Whisnant JP (1988) Central pontine myelinolysis and its imitators: MR findings. Radiology 168:795–802PubMedGoogle Scholar
  34. 34.
    Cha S (2006) Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol 27:475–487PubMedGoogle Scholar
  35. 35.
    Chan Y, Leung S, King AD et al (1999) Late radiation injury to the temporal lobes: morphologic evaluation at MR imaging. Radiology 213:800–807PubMedGoogle Scholar
  36. 36.
    Davis P, Hoffman JJ, Pearl G, Braun I (1986) CT evaluation of effects of cranial radiation therapy in children. AJR Am J Roentgenol 147:587–592PubMedGoogle Scholar
  37. 37.
    Covarrubias D, Luetmer P, Campeau N (2002) Posterior reversible encephalopathy syndrome: prognostic utility of quantitative diffusion-weighted MR images. AJNR Am J Neuroradiol 23:1038–1048PubMedGoogle Scholar
  38. 38.
    Post JD, Beauchamp NJ (1998) Reversible intracerebral pathologic entities mediated by vascular autoregulatory dysfunction. Radiographics 18:353–367Google Scholar
  39. 39.
    Yousry TA, Seelos K, Mayer M et al (1999) Characteristic MR lesion pattern and correlation of T1 and T2 lesion volume with neurologic and neuropsychological findings in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). AJNR Am J Neuroradiol 20:91–100PubMedGoogle Scholar
  40. 40.
    van dem Boom R, Lesnick Oberstein S, van den Berg-Huysmans A et al (2006) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: MR imaging changes and apolipoportein E genotype. AJNR Am J Neuroradiol 27:359–362PubMedGoogle Scholar
  41. 41.
    Kendall BE (1992) Disorders of lysosomes, peroxisomes, and mitochondria. AJNR Am J Neuroradiol 13:621–653PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Kelly K. Koeller
    • 1
  1. 1.Department of RadiologyMayo ClinicRochesterUSA

Personalised recommendations