Clinical SPECT and PET for Management of Patients with Epilepsy

  • Koen Van Laere
  • Karolien Goffin
  • Wim Van Paesschen


Epilepsy is a common chronic neurological disorder that is characterized by recurrent, unprovoked seizures and affects approximately 3% of the population. After the first seizure, about 80% of patients experience another seizure within the first 3 years. Some 60–70% of patients experience focal or partial seizures, and 30–40% generalized seizures. Epilepsy is controlled with medication in around 70% of cases. When seizures are medically intractable, resection of the epileptogenic cortex may be considered.


Temporal Lobe Epilepsy Tuberous Sclerosis Complex Epilepsy Surgery Hippocampal Sclerosis Epileptogenic Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cherry SR (2006) Multimodality in vivo imaging systems: twice the power or double the trouble? Annu Rev Biomed Eng 8:35–62PubMedCrossRefGoogle Scholar
  2. 2.
    Li LM, Fish DR, Sisodiya SM et al (1995) High resolution magnetic resonance imaging in adults with partial or secondary generalised epilepsy attending a tertiary referral unit. J Neurol Neurosurg Psychiatry 59(4):384–387PubMedGoogle Scholar
  3. 3.
    Rosenow F, Lüders H (2001) Presurgical evaluation of epilepsy. Brain 124 (Pt 9):1683–1700PubMedCrossRefGoogle Scholar
  4. 4.
    Elger CE, Helmstaedter C, Kurthen M (2004) Chronic epilepsy and cognition. Lancet Neurol 3(11):663–672PubMedCrossRefGoogle Scholar
  5. 5.
    Wiebe S, Blume WT, Girvin JP, Eliasziw M (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 345(5):311–318PubMedCrossRefGoogle Scholar
  6. 6.
    Cohen-Gadol AA, Ozduman K, Bronen RA et al (2004) Longterm outcome after epilepsy surgery for focal cortical dysplasia. J Neurosurg 101(1):55–65PubMedCrossRefGoogle Scholar
  7. 7.
    Dupont P, Van Paesschen W, Palmini A et al (2006) Ictal perfusion patterns associated with single MRI-visible focal dysplastic lesions: implications for the noninvasive delineation of the epileptogenic zone. Epilepsia 47(9):1550–1557PubMedCrossRefGoogle Scholar
  8. 8.
    Fukuda M, Masuda H, Honma J et al (2006) Ictal SPECT analyzed by three-dimensional stereotactic surface projection in frontal lobe epilepsy patients. Epilepsy Res 68(2):95–102PubMedCrossRefGoogle Scholar
  9. 9.
    Lee SK, Lee SY, Yun CH et al (2006) Ictal SPECT in neocortical epilepsies: clinical usefulness and factors affecting the pattern of hyperperfusion. Neuroradiology 48(9):678–684PubMedCrossRefGoogle Scholar
  10. 10.
    O’Brien TJ, So EL, Mullan BP et al (1998) Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 50(2):445–454PubMedGoogle Scholar
  11. 11.
    Avery RA, Spencer SS, Spanaki MV et al (1999) Effect of injection time on postictal SPET perfusion changes in medically refractory epilepsy. Eur J Nucl Med 26(8):830–836PubMedCrossRefGoogle Scholar
  12. 12.
    McNally KA, Paige AL, Varghese G et al (2005) Localizing value of ictal-interictal SPECT analyzed by SPM (ISAS). Epilepsia 46(9):1450–1464PubMedCrossRefGoogle Scholar
  13. 13.
    Drzezga A, Arnold S, Minoshima S et al (1999) 18F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med 40(5):737–746PubMedGoogle Scholar
  14. 14.
    Lin TW, de Aburto MA, Dahlbom M et al (2007) Predicting seizure-free status for temporal lobe epilepsy patients undergoing surgery: prognostic value of quantifying maximal metabolic asymmetry extending over a specified proportion of the temporal lobe. J Nucl Med 48(5):776–782PubMedGoogle Scholar
  15. 15.
    Lee SK, Lee SY, Kim KK et al (2005) Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy. Ann Neurol 58(4):525–532PubMedCrossRefGoogle Scholar
  16. 16.
    Casse R, Rowe CC, Newton M et al (2002) Positron emission tomography and epilepsy. Mol Imaging Biol 4(5):338–351PubMedCrossRefGoogle Scholar
  17. 17.
    Ollenberger GP, Byrne AJ, Berlangieri SU et al (2005) Assessment of the role of FDG PET in the diagnosis and management of children with refractory epilepsy. Eur J Nucl Med Mol Imaging 32(11):1311–1316PubMedCrossRefGoogle Scholar
  18. 18.
    Choi JY, Kim SJ, Hong SB et al (2003) Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging 30(4):581–587PubMedGoogle Scholar
  19. 19.
    Nelissen N, Van Paesschen W, Baete K et al (2006) Correlations of interictal FDG-PET metabolism and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis. Neuroimage 32(2):684–695PubMedCrossRefGoogle Scholar
  20. 20.
    Salzberg M, Taher T, Davie M et al (2006) Depression in temporal lobe epilepsy surgery patients: an FDG-PET study. Epilepsia 47(12):2125–2130PubMedCrossRefGoogle Scholar
  21. 21.
    Benedek K, Juhasz C, Chugani DC et al (2006) Longitudinal changes in cortical glucose hypometabolism in children with intractable epilepsy. J Child Neurol 21(1):26–31PubMedCrossRefGoogle Scholar
  22. 22.
    Quarantelli M, Berkouk K, Prinster A et al (2004) Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. J Nucl Med 45(2):192–201PubMedGoogle Scholar
  23. 23.
    Baete K, Nuyts J, Van Laere K et al (2004) Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET. Neuroimage 23(1):305–317PubMedCrossRefGoogle Scholar
  24. 24.
    Koepp MJ, Woermann FG (2005) Imaging structure and function in refractory focal epilepsy. Lancet Neurol 4(1):42–53PubMedCrossRefGoogle Scholar
  25. 25.
    Rosenberg DS, Demarquay G, Jouvet A et al (2005) [11C]-Methionine PET: dysembryoplastic neuroepithelial tumours compared with other epileptogenic brain neoplasms. J Neurol Neurosurg Psychiatry 76(12):1686–1692PubMedCrossRefGoogle Scholar
  26. 26.
    Kagawa K, Chugani DC, Asano E et al (2005) Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with alpha-[11C]methyl-L-tryptophan positron emission tomography (PET). J Child Neurol 20(5):429–438PubMedGoogle Scholar
  27. 27.
    Hammers A, Koepp MJ, Brooks DJ, Duncan JS (2005) Periventricular white matter flumazenil binding and postoperative outcome in hippocampal sclerosis. Epilepsia 46(6):944–948PubMedCrossRefGoogle Scholar
  28. 28.
    Mayberg HS, Sadzot B, Meltzer CC et al (1991) Quantification of mu and non-mu opiate receptors in temporal lobe epilepsy using positron emission tomography. Ann Neurol 30(1):3–11PubMedCrossRefGoogle Scholar
  29. 29.
    Picard F, Bruel D, Servent D et al (2006) Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study. Brain 129 (Pt 8):2047–2060PubMedCrossRefGoogle Scholar
  30. 30.
    Giovacchini G, Toczek MT, Bonwetsch R et al (2005) 5-HT 1A receptors are reduced in temporal lobe epilepsy after partial-volume correction. J Nucl Med 46(7):1128–1135PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Koen Van Laere
    • 1
  • Karolien Goffin
    • 1
  • Wim Van Paesschen
    • 2
  1. 1.Division of Nuclear MedicineUniversity Hospital GasthuisbergLeuvenBelgium
  2. 2.Department of NeurologyUniversity Hospital GasthuisbergLeuvenBelgium

Personalised recommendations