PET and SPECT are well-established tools to detect synaptic dysfunction in Alzheimer’s disease (AD). SPECT tracers, such as Tc-99m-HMPAO, are used for imaging blood flow, while F-18-fluorodeoxyglucose (FDG) is used with PET for imaging cerebral glucose consumption (see reviews by [1, 2]). In normal subjects, regional glucose metabolism and blood flow are tightly coupled to neuronal function, while in neurodegenerative disease both are reduced due to regional synaptic dysfunction. Scans must be obtained under well-controlled standard conditions to avoid confounding effects by uncontrolled brain activation. Thus, while this review largely refers to FDG PET as the most accurate imaging tool to assess synaptic dysfunction in dementia, many aspects can also be addressed by blood-flow SPECT, albeit with somewhat lower accuracy [3].


Mild Cognitive Impairment Alzheimer Disease Dementia With Lewy Body Frontotemporal Dementia Acetylcholinesterase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dougall NJ, Bruggink S, Ebmeier KP (2004) Systematic review of the diagnostic accuracy of 99mTc-HMPAO-SPECT in dementia. Am J Geriatr Psychiatry12:554–570CrossRefGoogle Scholar
  2. 2.
    Herholz K (2003) PET studies in dementia. Ann Nucl Med 17:79–89PubMedCrossRefGoogle Scholar
  3. 3.
    Herholz K, Schopphoff H, Schmidt M et al (2002) Direct comparison of spatially normalized PET and SPECT scans in Alzheimer disease. J Nucl Med 43:21–26PubMedGoogle Scholar
  4. 4.
    Minoshima S, Giordani B, Berent S et al (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42:85–94PubMedCrossRefGoogle Scholar
  5. 5.
    Gusnard DA, Raichle ME, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694PubMedCrossRefGoogle Scholar
  6. 6.
    Herholz K, Salmon E, Perani D et al (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 17:302–316PubMedCrossRefGoogle Scholar
  7. 7.
    Burdette JH, Minoshima S, Vander Borght T et al (1996) Alzheimer disease: improved visual interpretation of PET images by using three-dimensional stereotaxic surface projections. Radiology 198:837–843PubMedGoogle Scholar
  8. 8.
    Ishii K, Willoch F, Minoshima S et al (2001) Statistical brain mapping of 18F-FDG PET in Alzheimer’s disease: validation of anatomic standardization for atrophied brains. J Nucl Med 42:548–557PubMedGoogle Scholar
  9. 9.
    Jagust WJ, Friedland RP, Budinger TF et al (1988) Longitudinal studies of regional cerebral metabolism in Alzheimer’s disease. Neurology 38:909–912PubMedGoogle Scholar
  10. 10.
    Mielke R, Herholz K, Grond M et al (1994) Clinical deterioration in probable Alzheimer’s disease correlates with progressive metabolic impairment of association areas. Dementia 5:36–41PubMedCrossRefGoogle Scholar
  11. 11.
    Smith GS, de Leon MJ, George AE et al (1992) Topography of cross-sectional and longitudinal glucose metabolic deficits in Alzheimer’s disease. Pathophysiologic implications. Arch Neurol 49:1142–1150PubMedGoogle Scholar
  12. 12.
    Grady CL, Haxby JV, Schlageter NL et al (1986) Stability of metabolic and neuropsychological asymmetries in dementia of the Alzheimer type. Neurology 36:1390–1392PubMedGoogle Scholar
  13. 13.
    Haxby JV, Grady CL, Koss E et al (1990) Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. Arch Neurol 47:753–760PubMedGoogle Scholar
  14. 14.
    Heiss WD, Kessler J, Mielke R et al (1994) Long-term effects of phosphatidylserine, pyritinol, and cognitive training in Alzheimer’s disease. A neuropsychological, EEG, and PET investigation. Dementia 5:88–98PubMedCrossRefGoogle Scholar
  15. 15.
    Alexander GE, Chen K, Pietrini P et al (2002) Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatry 159:738–745PubMedCrossRefGoogle Scholar
  16. 16.
    Hirono N, Hashimoto M, Ishii K et al (2004) One-year change in cerebral glucose metabolism in patients with Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 16:488–492PubMedGoogle Scholar
  17. 17.
    Small GW, Mazziotta JC, Collins MT et al (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 273:942–947PubMedCrossRefGoogle Scholar
  18. 18.
    Reiman EM, Caselli RJ, Yun LS et al (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 334:752–758PubMedCrossRefGoogle Scholar
  19. 19.
    Reiman EM, Chen K, Alexander GE et al (2004) Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci USA 101:284–289PubMedCrossRefGoogle Scholar
  20. 20.
    Small GW, Ercoli LM, Silverman DH et al (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 97:6037–6042PubMedCrossRefGoogle Scholar
  21. 21.
    Drzezga A, Grimmer T, Riemenschneider M et al (2005) Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med 46:1625–1632PubMedGoogle Scholar
  22. 22.
    Anchisi D, Borroni B, Franceschi M et al (2005) Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol 62:1728–1733PubMedCrossRefGoogle Scholar
  23. 23.
    Heiss WD, Pawlik G, Holthoff V et al (1992) PET correlates of normal and impaired memory functions. Cerebrovasc Brain Metab Rev 4:1–27PubMedGoogle Scholar
  24. 24.
    Nestor PJ, Fryer TD, Smielewski P, Hodges JR (2003) Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol 54:343–351PubMedCrossRefGoogle Scholar
  25. 25.
    Mosconi L, Tsui WH, DeSanti S et al (2005) Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 64:1860–1867PubMedCrossRefGoogle Scholar
  26. 26.
    de Leon MJ, Convit A, Wolf OT et al (2001) Prediction of cognitive decline in normal elderly subjects with 2-F-18-fluoro-2-deoxy-D-glucose positron-emission tomography (FDG PET). Proc Natl Acad Sci USA 98:10966–10971PubMedCrossRefGoogle Scholar
  27. 27.
    Neary D, Snowden J, Mann D (2005) Frontotemporal dementia. Lancet Neurol 4:771–780PubMedCrossRefGoogle Scholar
  28. 28.
    Salmon E, Garraux G, Delbeuck X et al (2003) Predominant ventromedial frontopolar metabolic impairment in frontotemporal dementia. Neuroimage 20:435–440PubMedCrossRefGoogle Scholar
  29. 29.
    Diehl J, Grimmer T, Drzezga A, Riemenschneider M, Forstl H, Kurz A (2004) Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging 25:1051–1056PubMedCrossRefGoogle Scholar
  30. 30.
    Chawluk JB, Mesulam MM, Hurtig H et al (1986) Slowly progressive aphasia without generalized dementia: studies with positron emission tomography. Ann Neurol 19:68–74PubMedCrossRefGoogle Scholar
  31. 31.
    Ishii K, Sakamoto S, Sasaki M et al (1998) Cerebral glucose metabolism in patients with frontotemporal dementia. J Nucl Med 39:1875–1878PubMedGoogle Scholar
  32. 32.
    Foster NL, Heidebrink JL, Clark CM et al (2007) FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 130(Pt 10):2616–2635PubMedCrossRefGoogle Scholar
  33. 33.
    Minoshima S, Foster NL, Sima AA et al (2001) Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol 50:358–365PubMedCrossRefGoogle Scholar
  34. 34.
    Hu XS, Okamura N, Arai H et al (2000) 18F-fluorodopa PET study of striatal dopamine uptake in the diagnosis of dementia with lewy bodies. Neurology 55:1575–1577PubMedGoogle Scholar
  35. 35.
    Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica 82:239–259PubMedCrossRefGoogle Scholar
  36. 36.
    Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185PubMedCrossRefGoogle Scholar
  37. 37.
    Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319PubMedCrossRefGoogle Scholar
  38. 38.
    Edison P, Archer HA, Hinz R et al (2007) Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 68:501–508PubMedCrossRefGoogle Scholar
  39. 39.
    Kemppainen NM, Aalto S, Wilson IA et al (2006) Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology 67:1575–1580PubMedCrossRefGoogle Scholar
  40. 40.
    Nordberg A (2004) PET imaging of amyloid in Alzheimer’s disease. Lancet Neurol 3:519–527PubMedCrossRefGoogle Scholar
  41. 41.
    Rabinovici GD, Furst AJ, O’Neil JP et al (2007) 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 68:1205–1212PubMedCrossRefGoogle Scholar
  42. 42.
    Klunk WE, Lopresti B, Nebes RD et al (2006) Development and application of beta-amyloid imaging agents in Alzheimer’s disease. In: Herholz K, Perani D, Morris CM (eds) The dementias: early diagnosis and evaluation. Dekker, New York, pp 279–310Google Scholar
  43. 43.
    Small GW, Kepe V, Ercoli LM et al (2006) PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 355:2652–2663PubMedCrossRefGoogle Scholar
  44. 44.
    Heneka MT, Ramanathan M, Jacobs AH et al (2006) Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci 26:1343–1354PubMedCrossRefGoogle Scholar
  45. 45.
    Braak H, Rub U, Schultz C, Del Tredici K (2006) Vulnerability of cortical neurons to Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis 9:35–44PubMedGoogle Scholar
  46. 46.
    Nordberg A, Lundqvist H, Hartvig P et al (1995) Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains — in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9:21–27PubMedCrossRefGoogle Scholar
  47. 47.
    Bottlaender M, Valette H, Roumenov D et al (2003) Biodistribution and radiation dosimetry of (18)f-fluoro-a-85380 in healthy volunteers. J Nucl Med 44:596–601PubMedGoogle Scholar
  48. 48.
    Mamede M, Ishizu K, Ueda M et al (2004) Quantification of human nicotinic acetylcholine receptors with 123I-5IA SPECT. J Nucl Med 45:1458–1470PubMedGoogle Scholar
  49. 49.
    Kadir A, Almkvist O, Wall A et al (2006) PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology (Berl) 188:509–520PubMedCrossRefGoogle Scholar
  50. 50.
    Mesulam M, Giacobini E (2000) Neuroanatomy of cholinesterases in the normal human brain and in Alzheimer’s disease. In: Cholinesterases and cholinesterase inhibitors. Martin Dunitz, London, pp 121–137Google Scholar
  51. 51.
    Namba H, Irie T, Fukushi K, Iyo M (1994) In vivo measurement of acetylcholinesterase activity in the brain with a radioactive acetylcholine analog. Brain Res 667:278–282PubMedCrossRefGoogle Scholar
  52. 52.
    Kilbourn MR, Snyder SE, Sherman PS, Kuhl DE (1996) In vivo studies of acetylcholinesterase activity using a labeled substrate, n-[C-11]methylpiperdin-4-yl propionate ([C-11]PMP). Synapse 22:123–131PubMedCrossRefGoogle Scholar
  53. 53.
    Kuhl DE, Koeppe RA, Minoshima S et al (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52:691–699PubMedGoogle Scholar
  54. 54.
    Iyo M, Namba H, Fukushi K et al (1997) Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimers disease. Lancet 349:1805–1809PubMedCrossRefGoogle Scholar
  55. 55.
    Herholz K, Bauer B, Wienhard K et al (2000) In-vivo measurements of regional acetylcholine esterase activity in degenerative dementia: comparison with blood flow and glucose metabolism. J Neural Transm 12:1457–1468CrossRefGoogle Scholar
  56. 56.
    Rinne JO, Kaasinen V, Jarvenpaa T et al (2003) Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74:113–115PubMedCrossRefGoogle Scholar
  57. 57.
    Bohnen NI, Kaufer DI, Hendrickson R et al (2005) Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 76:315–319PubMedCrossRefGoogle Scholar
  58. 58.
    Kaasinen V, Nagren K, Jarvenpaa T et al (2002) Regional effects of donepezil and rivastigmine on cortical acetylcholinesterase activity in Alzheimer’s disease. J Clin Psychopharmacol 22:615–620PubMedCrossRefGoogle Scholar
  59. 59.
    Kadir A, Darreh-Shori T, Almkvist O et al (2007) PET imaging of the in vivo brain acetylcholinesterase activity and nicotine binding in galantamine-treated patients with AD. Neurobiol Aging [Epub ahead of print]Google Scholar
  60. 60.
    Brooks DJ (1997) Advances in imaging Parkinson’s disease. Curr Opin Neurol 10:327–331PubMedCrossRefGoogle Scholar
  61. 61.
    McKeith I, O’Brien J, Walker Z et al (2007) Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 6:305–313PubMedCrossRefGoogle Scholar
  62. 62.
    Hilker R, Thomas A, Klein JC et al (2005) Dementia in Parkinson’s disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65:1716–1722PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Karl Herholz
    • 1
  1. 1.Wolfson Molecular Imaging CentreThe University of ManchesterManchesterUK

Personalised recommendations