Positron Emission Tomography in the Evaluation of Brain Tumors

  • Alfred Buck


Positron emission tomography (PET) has become a very valuable modality to evaluate different aspects of brain tumors. A good summary is given by two recent reviews [1,2]. Simply stated, PET allows the quantitative measurement of radioactivity in a target volume based on the annihilation of positrons. The spatial resolution of state-of-the-art commercial PET scanners is in the order of 4–5 mm. Just as important for tumor evaluation is the tracer used, because it is the nature of the tracer which determines the biological properties of the healthy or diseased tissues that are measured. The useful clinical applications of PET in the evaluation of brain tumors are summarized in Table 1.


Positron Emission Tomography Brain Tumor Primary Central Nervous System Lymphoma Pilocytic Astrocytoma Radiation Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen W (2007) Clinical applications of PET in brain tumors. J Nucl Med 48(9):1468–1481PubMedCrossRefGoogle Scholar
  2. 2.
    Herholz K, Coope D, Jackson A (2007) Metabolic and molecular imaging in neuro-oncology. Lancet Neurol 6(8):711–724PubMedCrossRefGoogle Scholar
  3. 3.
    Krohn KA, Mankoff DA, Muzi M et al (2005) True tracers: comparing FDG with glucose and FLT with thymidine. Nucl Med Biol 32(7):663–671PubMedCrossRefGoogle Scholar
  4. 4.
    Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 41(11):1861–1867PubMedGoogle Scholar
  5. 5.
    Chao ST, Suh JH, Raja S et al (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96(3):191–197PubMedCrossRefGoogle Scholar
  6. 6.
    Tsuyuguchi N, Sunada I, Iwai Y et al (2003) Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg 98(5):1056–1064PubMedCrossRefGoogle Scholar
  7. 7.
    Spaeth N, Wyss MT, Weber B et al (2004) Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J Nucl Med 45(11):1931–1938PubMedGoogle Scholar
  8. 8.
    Wyss MT, Spaeth N, Biollaz G et al (2007) Uptake of 18F-Fluorocholine, 18F-FET, and 18F-FDG in C6 gliomas and correlation with 131I-SIP(L19), a marker of angiogenesis. J Nucl Med 48(4):608–614PubMedCrossRefGoogle Scholar
  9. 9.
    Spaeth N, Wyss MT, Pahnke J et al (2006) Uptake of 18F-fluorocholine, 18F-fluoro-ethyl-L:-tyrosine and 18F-fluoro-2-deoxyglucose in F98 gliomas in the rat. Eur J Nucl Med Mol Imaging 33(6):673–682PubMedCrossRefGoogle Scholar
  10. 10.
    Popperl G, Gotz C, Rachinger W et al (2004) Value of O-(2-[18F]fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31(11):1464–1470PubMedCrossRefGoogle Scholar
  11. 11.
    Basso U, Brandes AA (2002) Diagnostic advances and new trends for the treatment of primary central nervous system lymphoma. Eur J Cancer 38(10):1298–1312PubMedCrossRefGoogle Scholar
  12. 12.
    Hanson MW, Glantz MJ, Hoffman JM et al (1991) FDG-PET in the selection of brain lesions for biopsy. J Comput Assist Tomogr 15(5):796–801PubMedCrossRefGoogle Scholar
  13. 13.
    Pirotte B, Goldman S, Massager N, et al (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45(8):1293–1298PubMedGoogle Scholar
  14. 14.
    Aronen HJ, Pardo FS, Kennedy DN, et al (2000) High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res 6(6): 2189–2200PubMedGoogle Scholar
  15. 15.
    Cha S, Knopp EA, Johnson G et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223(1):11–29PubMedCrossRefGoogle Scholar
  16. 16.
    Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128 (Pt 3): 678–687PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Alfred Buck
    • 1
  1. 1.PET CenterUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations