MDCT pp 65-79 | Cite as

3-D Post-processing: Principles and Practical Applications

  • Unni K. Udayasankar
  • Zaheerabbas Momin
  • William C. Small


Computed tomography (CT) has evolved considerably since its introduction more than three decades ago. In 1998, multi-detector row CT (MDCT) technology provided a key breakthrough in the field of radiology. Today, MDCT scanners enable the rapid acquisition of an exceptional number of thin sections during multiple phases of contrast enhancement. The increasing spatial and temporal resolutions have allowed major improvements to be made in differentiating and characterizing normal and abnormal structures and processes.


Intracranial Aneurysm Compute Tomography Colonography Helical Compute Tomography MDCT Scanner Virtual Endoscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cuk V, Belina S, Fure R et al (2007) Virtual bronchoscopy and 3-D spiral CT reconstructions in the management of patient with bronchial cancer—our experience with Syngo 3-D postprocessing software. Coll Antropol 31:315–320PubMedGoogle Scholar
  2. 2.
    Jaffe TA, Nelson RC, Johnson GA et al (2006) Optimization of multiplanar reformations from isotropic data sets acquired with 16-detector row helical CT scanner. Radiology 238:292–299CrossRefPubMedGoogle Scholar
  3. 3.
    Kozuka T, Tomiyama N, Johkoh T et al (2003) Coronal multiplanar reconstruction view from isotropic voxel data sets obtained with multidetector-row CT: assessment of detection and size of medistinal and hilar lymph nodes. Radiat Med 21:23–27PubMedGoogle Scholar
  4. 4.
    Lucey BC, Stuhlfaut JW, Hochberg AR et al (2005) Evaluation of blunt abdominal trauma using PACS-based 2-D and 3-D MDCT reformations of the lumbar spine and pelvis. AJR Am J Roentgenol 185:1435–1440CrossRefPubMedGoogle Scholar
  5. 5.
    van Ooijen PM, Ho KY, Dorgelo J, Oudkerk M (2003) Coronary artery imaging with multidetector CT: visualization issues. Radiographics 23:e16CrossRefPubMedGoogle Scholar
  6. 6.
    Semba CP, Rubin GD, Dake MD (1994) Three-dimensional spiral CT angiography of the abdomen. Semin Ultrasound CT MR 15:133–138CrossRefPubMedGoogle Scholar
  7. 7.
    Vining DJ (1996) Virtual endoscopy: is it reality Radiology 200:30–31PubMedGoogle Scholar
  8. 8.
    Fenlon HM, Nunes DP, Schroy PC, 3rd et al (1999) A comparison of virtual and conventional colonoscopy for the detection of colorectal polyps. J Engl J Med 341:1496–1503CrossRefGoogle Scholar
  9. 9.
    Bernhardt TM, Rapp-Bernhardt U (2001) Virtual cystoscopy of the bladder based on CT and MRI data. Abdom Imaging 26:325–332CrossRefPubMedGoogle Scholar
  10. 10.
    Klingebiel R, Bauknecht HC, Kaschke O et al (2001) Virtual endoscopy of the tympanic cavity based on high-resolution multisclice computed tomographic data. Otol Neurotol 22:803–807CrossRefPubMedGoogle Scholar
  11. 11.
    Sun Z, Winder RJ, Kelly BE et al (2004) Diagnostic value of CT virtual intravascular endoscopy in aortic stent-grafting. J Endovasc Ther 11:13–25CrossRefPubMedGoogle Scholar
  12. 12.
    De Wever W, Bogaert J, Verschakelen JA (2005) Virtual bronchoscopy: accuracy and usefulness—an overview. Semin Ultrasound CT MR 26:364–373CrossRefPubMedGoogle Scholar
  13. 13.
    Kalra MK, Rizzo S, Maher MM et al (2005) Chest CT performed with z-axis modulation: scanning protocol and radiation dose. Radiology 237:303–308CrossRefPubMedGoogle Scholar
  14. 14.
    Namasivayam S, Kalra MK, Pottala KM et al (2006) Optimization of Z-axis automatic exposure control for multidetector row CT evaluation of neck and comparison with fixed tube current technique for image quality and radiation dose. AJNR Am J Neuroradiol 27:2221–2225PubMedGoogle Scholar
  15. 15.
    Kalra MK, Rizzo SM, Novelline RA (2005) Reducing radiation dose in emergency computed tomography with automatic exposure control techniques. Emerg Radiol 11:267–274CrossRefPubMedGoogle Scholar
  16. 16.
    Uchida M, Ishibashi M, Abe T et al (1999) Three-dimensional imaging of liver tumors using helical CT during intravenous injection of contrast medium. J Comput Assist Tomogr 23:435–440CrossRefPubMedGoogle Scholar
  17. 17.
    Matoba M, Kondou T, Yokota H et al (2005) Usefulness of a saline flush for intravenous 3-dimensional computed tomography portography using multidetector-row helical computed tomography. J Comput Assist Tomogr 29:780–785CrossRefPubMedGoogle Scholar
  18. 18.
    Yamashita K, Mikami Y, Urakami A et al (2003) Three-dimensional images of pancreatic pseudocyst prior to percutaneous drainage. Am J Surg 185:219–220CrossRefPubMedGoogle Scholar
  19. 19.
    Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic peak enhancement at CT: effect of contrast medium injection rate—pharmacokinetic analysis and experimental procine model. Radiology 206:455–464PubMedGoogle Scholar
  20. 20.
    Kim T, Murakami T, Takahashi S et al (1998) Effects of injection rates of contrast material on arterial phase hepatic CT. AJR Am J Roentgenol 171:429–432PubMedGoogle Scholar
  21. 21.
    Tanikake M, Shimizu T, Narabayashi I et al (2003) Three-dimensional CT angiography of the hepatic artery: use of multi-detector row helical CT and a contrast agent. Radiology 227:883–889CrossRefPubMedGoogle Scholar
  22. 22.
    Kloska SP, Fischer T, Nabavi DG et al (2007) Comparison of different iodine concentration contrast media in perfusion computed tomography of the brain: is high iodine concentration useful. Invest Radiol 42:564–568CrossRefPubMedGoogle Scholar
  23. 23.
    Cademartiri F, Mollet NR, van der Lugt A et al (2005) Intravenous contrast material administration at helical 16-detector row CT coronary angiography: effect of iodine concentration on vascular attenuation. Radiology 236:661–665CrossRefPubMedGoogle Scholar
  24. 24.
    Haage P, Schmitz-Rode T, Hubner D et al (2000) Reduction of contrast material dose and artifacts by a saline flush using a double power injector in helical CT of the thorax. AJR Am J Roentgenol 174:1049–1053PubMedGoogle Scholar
  25. 25.
    Schoellnast H, Tillich M, Deutschmann HA et al (2004) Improvement of parenchymal and vascular enhancement using saline flush and power injection for multiple-detector-row abdominal CT. Eur Radiol 14:659–664CrossRefPubMedGoogle Scholar
  26. 26.
    Macari M, Israel GM, Berman P et al (2001) Infrarenal abdominal aortic aneurysms at multi-detector row CT angiography intravascular enhancement without a timing acquisition. Radiology 220:519–523PubMedGoogle Scholar
  27. 27.
    Sandstede JJ, Tschammler A, Beer M et al (2001) Optimization of automatic bolus tracking for timing of the arterial phase of helical liver CT. Eur Radiol 11:1396–1400CrossRefPubMedGoogle Scholar
  28. 28.
    Silverman PM, Roberts S, Tefft MC et al 1995) Helical CT of the liver: clinical application of an automated computer technique, SmartPrep, for obtaining images with optimal contrast enhancement. AJR Am J Roentgenol 165:73–78PubMedGoogle Scholar
  29. 29.
    Cademartiri F, Nieman K, van der Lugt A et al (2004) Intravenous contrast material administration at 16-detector row helical CT coronary angiography: test bolus versus bolus-tracking technique. Radiology 233:817–823CrossRefPubMedGoogle Scholar
  30. 30.
    Velthuis BK, Rinkel GJ, Ramos LM et al (1998) Subarachnoid hemorrhage: aneurysm detection and preoperative evaluation with CT angiography. Radiology 208:423–430PubMedGoogle Scholar
  31. 31.
    Anderson GB, Steinke DE, Petruk KC et al (1999) Computed tomographic angiography versus digital subtraction angiography for the diagnosis and early treatment of ruptured intracranial aneurysms. Neurosurgery 45:1315–1320. Discussion 1320–1312CrossRefPubMedGoogle Scholar
  32. 32.
    Cloft HJ, Joseph GJ, Dion JE (1999) Risk of cerebral angiography in patients with subarachnoid hemorrhage, cerebral aneurysm, and arteriovenous malformation: a meta-analysis. Stroke 30:317–320PubMedGoogle Scholar
  33. 33.
    Aoki S, Sasaki Y, Machida T et al (1992) Cerebral aneurysms: detection and delineation using 3-D-CT angiography. AJNR Am J Neuroradiol 13:1115–1120PubMedGoogle Scholar
  34. 34.
    Kangasniemi M, Makela T, Koskinen S et al (2004) Detection of intracranial aneurysms with two-dimensional and three-dimensional multislice helical computed tomographic angiography. Neurosurgery 54:336–340. Discussion 340–331CrossRefPubMedGoogle Scholar
  35. 35.
    Korogi Y, Takahashi M, Katada K et al (1999) Intracranial aneurysms: detection with three-dimensional CT angiography with volume rendering-comparison with conventional angiographic and surgical findings. Radiology 211:497–506PubMedGoogle Scholar
  36. 36.
    Karamessini MT, Kagadis GC, Petsas T et al (2004) CT angiography with three-dimensional techniques for the early diagnosis of intracranial aneurysms. Comparison with intra-arterial DSA and the surgical findings. Eur J Radiol 49:212–223CrossRefPubMedGoogle Scholar
  37. 37.
    Yoon DY, Lim KJ, Choi CS et al (2007) Detection and characterization of intracranial aneurysms with 16-channel multidetector row CT angiography: a prospective comparison of volume-rendered images and digital subtraction angiography. AJNR Am J Neuroradiol 28:60–67PubMedGoogle Scholar
  38. 38.
    Villablanca JP, Jahan R, Hooshi P et al (2002) Detection and characterization of very small cerebral aneurysms by using 2-D and 3-D helical CT angiography. AJNR Am J Neuroradiol 23:1187–1198PubMedGoogle Scholar
  39. 39.
    Sakamoto S, Kiura Y, Shibukawa M et al (2006) Subtracted 3-D CT angiography for evaluation of internal carotid artery aneurysms: comparison with conventional digital subtraction angiography. AJNR Am J Neuroradiol 27:1332–1337PubMedGoogle Scholar
  40. 40.
    Sakuma I, Tomura N, Kinouchi H et al (2006) Postoperative three-dimensional CT angiography after cerebral aneurysm clipping with titanium clips: detection with single detector CT. Comparison with intra-arterial digital subtraction angiography. Clin Radiol 61:505–512CrossRefPubMedGoogle Scholar
  41. 41.
    Marcus CD, Ladam-Marcus VJ, Bigot JL et al (1999) Carotid arterial stenosis: evaluation at CT angiography with the volume-rendering technique. Radiology 211:775–780PubMedGoogle Scholar
  42. 42.
    Karhuketo TS, Dastidar PS, Ryymin PS et al (2002) Virtual endoscopy imaging of the middle ear cavity and ossicles. Eur Arch Otorhinolaryngol 259:77–83CrossRefPubMedGoogle Scholar
  43. 43.
    Trojanowska A, Trojanowski P, Olszanski W et al (2007) How to reliably evaluate middle ear diseases? Comparison of different methods of post-processing based on multislice computed tomography examination. Acta Otolaryngol 127:258–264CrossRefPubMedGoogle Scholar
  44. 44.
    Rodt T, Bartling SO, Zajaczek JE et al (2006) Evaluation of surface and volume rendering in 3-D-CT of facial fractures. Dentomaxillofac Radiol 35:227–231CrossRefPubMedGoogle Scholar
  45. 45.
    Chen WJ, Yang YJ, Fang YM et al (2006) Identification and classification in le fort type fractures by using 2-D and 3-D computed tomography. Chin J Traumatol 9:59–64PubMedGoogle Scholar
  46. 46.
    Ueno J, Murase T, Yoneda K et al (2004) Three-dimensional imaging of thoracic diseases with multidetector row CT. J Med Invest 51:163–170CrossRefPubMedGoogle Scholar
  47. 47.
    Boiselle PM, Dippolito G, Copeland J et al (2003) Multiplanar and 3-D imaging of the central airways: comparison of image quality and radiation dose of single-detector row CT and multi-detector row CT at differing tube currents in dogs. Radiology 228:107–111CrossRefPubMedGoogle Scholar
  48. 48.
    Lawler LP, Fishman EK (2001) Multi-detector row CT of thoracic disease with emphasis on 3-D volume rendering and CT angiography. Radiographics 21:1257–1273PubMedGoogle Scholar
  49. 49.
    Di Simone MP, Mattioli S, D’Ovidio F, Bassi F (2003) Three-dimensional CT imaging and virtual endoscopy for the placement of self-expandable stents in oesophageal and tracheobronchial neoplastic stenoses. Eur J Cardiothorac Surg 23:106–108CrossRefPubMedGoogle Scholar
  50. 50.
    Klingenbeck-Regn K, Schaller S, Flohr T et al (1999) Subsecond multi-slice computed tomography: basics and applications. Fur J Radiol 31:110–124Google Scholar
  51. 51.
    Nikolaou K, Flohr T, Knez A et al (2004) Advances in cardiac CT imaging: 64-slice scanner. Int J Cardiovasc Imaging 20:535–540CrossRefPubMedGoogle Scholar
  52. 52.
    van der Vleuten PA, Willems TP, Gotte MJ et al (2006) Quantification of global left ventricular function: comparison of multidetector computed tomography and magnetic resonance imaging a meta-analysis and review of the current literature. Acta Radiol 47:1049–1057CrossRefPubMedGoogle Scholar
  53. 53.
    Sirineni GK, Kalra MK, Pottala KM et al (2006) Visualization techniques in computed tomographic coronoary angiography. Curr Probl Diagn Radiol 35:245–257CrossRefPubMedGoogle Scholar
  54. 54.
    Datta J, White CS, Gilkeson RC et al (2005) Anomalous coronary arteries in adults: depiction at multidetector row CT angiography. Radiology 235:812–818CrossRefPubMedGoogle Scholar
  55. 55.
    Shi H, Aschoff AJ, Brambs HJ, Hoffmann MH (2004) Multislice CT imaging of anomalous coronary arteries. Eur Radiol 14:2172–2181CrossRefPubMedGoogle Scholar
  56. 56.
    Carrascosa P, Capunay C, Vembar M et al (2005) Multislice CT virtual angioscopy of the abdomen. Abdom Imaging 30:249–258CrossRefPubMedGoogle Scholar
  57. 57.
    Tepe SM, Memisoglu E, Kural AR (2004) Three-dimensional nonivasive contrast-enhanced electron beam tomography angiography of the kidneys: adjunctive use in medical and surgical management. Clin Imaging 28:52–58CrossRefPubMedGoogle Scholar
  58. 58.
    Fleiter TR, Mervis S (2007) The role of 3-D-CTA in the assessment of peripheral vascular lesions in trauma patients. Eur J Radiol 64:92–102CrossRefPubMedGoogle Scholar
  59. 59.
    El Fettouh HA, Herts BR, Nimeh T et al (2003) Prospective comparison of 3-dimensional volume rendered computerized tomography and conventional renal arteriography for surgical planning in patients undergoing la paroscopic donor nephrectomy. J Urol 170:57–60CrossRefPubMedGoogle Scholar
  60. 60.
    Coll DM, Uzzo RG, Herts BR et al (1999) 3-dimensional volume rendered computerized tomography for preoperative evaluation and intraoperative treatment of patients undergoing nephron sparing surgery. J Urol 161:1097–1102CrossRefPubMedGoogle Scholar
  61. 61.
    Coll DM, Herts BR, Davros WJ et al (2000) Preoperative use of 3-D volume rendering to demonstrate renal tumors and renal anatomy. Radiographics 20:431–438PubMedGoogle Scholar
  62. 62.
    Yamazaki S, Takayama T, Watanabe Y et al (2007) Imaging modality of three-dimensional CT in caudate cholangioma: assessment for resectability. Hepatogastroenterology 54:397–399PubMedGoogle Scholar
  63. 63.
    Bogetti JD, Herts BR, Sands MJ et al (2001) Accuracy and utility of 3-dimensional computed tomography in evaluating donors for adult living related liver transplants. Liver Transpl 7:687–692CrossRefPubMedGoogle Scholar
  64. 64.
    Onodera Y, Omatsu T, Nakayama J et al (2004) Peripheral anatomic evaluation using 3-D CT hepatic venography in donors: significance of peripheral venous visualization in living-donor liver transplantation. AJR Am J Roentgenol 183:1065–1070PubMedGoogle Scholar
  65. 65.
    Hiroshige S, Nishizaki T, Soejima Y et al (2001) Beneficial effects of 3-dimensional visualization on hepatic vein reconstruction in living donor liver transplantation using right lobe graft. Transplantation 72:1993–1996CrossRefPubMedGoogle Scholar
  66. 66.
    Schroeder T, Radtke A, Kuehl H et al (2006) Evaluation of living liver donors with an all-inclusive 3-D multi-detector row CT protocol. Radiology 238:900–910CrossRefPubMedGoogle Scholar
  67. 67.
    Smith PA, Klein AS, Health DG et al (1998) Dual-phase spiral CT angiography with volumetric 3-D rendering for preoperative liver transplant evaluation: preliminary observations. J Comput Assist Tomogr 22:868–874CrossRefPubMedGoogle Scholar
  68. 68.
    Schroeder T, Malago M, Debatin JF et al (2005) “All-in-one” imaging protocols for the evaluation of potential living liver donors: comparison of magnetic resonance imaging and multidetector computed tomography. Liver Transpl 11:776–787CrossRefPubMedGoogle Scholar
  69. 69.
    Takeshita K, Furui S, Takada K (2002) Multidetector row helical CT of the pancreas: value of three-dimensional images, two-dimensional reformations, and contrast-enhanced multiphasic imaging. J Hepatobiliary Pancrat Surg 9:576–582CrossRefGoogle Scholar
  70. 70.
    Matsuki M, Tanikake M, Kani H et al (2006) Dualphase 3-D CT angiography during a single breath-hold using 16-MDCT: assessment of vascular anatomy before laparoscopic gastrectomy. AJR Am J Roentgenol 186:1079–1085CrossRefPubMedGoogle Scholar
  71. 71.
    Matsuki M, Kanazawa S, Kanamoto T et al (2006) Virtual CT gastrectomy by three-dimensional imaging using multidetector-row CT for laparoscopic gastrectomy. Abdom Imaging 31:268–276CrossRefPubMedGoogle Scholar
  72. 72.
    Kobayashi M, Morishita S, Okabayashi T et al (2006) Preoperative assessment of vascular anatomy of inferior mesenteric artery by volume-rendered 3-D-CT for laparoscopic lymph node dissection with left colic artery preservation in lower signoid and rectal cancer. World J Gastroenterol 12:553–555PubMedGoogle Scholar
  73. 73.
    Johnson PT, Heath DG, Hofmann LV et al (2003) Multidetector-row computed tomography with three-dimensional volume rendering of pancreatic cancer: a complete preoperative staging tool using computed tomography angiography and volume-rendered cholangiopancreatography. J Comput Assist Tomogr 27:347–353CrossRefPubMedGoogle Scholar
  74. 74.
    Hurley ME, Herts BR, Remer EM et al (2003) Three-dimensional volume-rendered helical CT before laparoscopic adrenalectomy. Radiology 229:581–586CrossRefPubMedGoogle Scholar
  75. 75.
    House MG, Yeo CJ, Cameron JL et al (2004) Predicting resectability of periampullary cancer with three-dimensional computed tomography. J Gastrointest Surg 8:280–288CrossRefPubMedGoogle Scholar
  76. Candocia FJ, Goldman I (2005) Three-dimensional computed tomography illustration of small bowel obstruction transition points in patients receiving oral contrast: report of 3 cases. J Comput Assit Tomogr 29:202–204CrossRefGoogle Scholar
  77. 77.
    Yee J, Akerkar GA, Hung RK et al (2001) Colorectal neoplasia: performance characteristics of CT colonography for detection in 300 patients. Radiology 219:685–692PubMedGoogle Scholar
  78. 78.
    Beaulieu CF, Jeffrey RB, Jr. et al (1999) Display modes for CT colonography. Part II. Blinded comparison of axial CT and virtual endoscopic and panoramic endoscopic volume-rendered studies. Radiology 212:203–212PubMedGoogle Scholar
  79. 79.
    McFarland EG, Brink JA, Pilgram TK et al (2001) Spiral CT colonography: reader agreement and diagnostic performance with two-and three-dimensional image-display techniques. Radiology 218:375–383PubMedGoogle Scholar
  80. 80.
    Noroozian M, Cohan RH, Caoili EM et al (2004) Multislice CT urography: state of the art. Br J Radiol 77 Spec No 1:S74–86CrossRefGoogle Scholar
  81. 81.
    Chow LC, Sommer FG (2001) Multidetector CT urography with abdominal compression and three-dimensional reconstruction. AJR Am J Roentgenol 177:849–855PubMedGoogle Scholar
  82. 82.
    Kim JK, Ahn JH, Park T et al (2002) Virtual cystoscopy of the contrast material-filled bladder in patients with gross hematuria. AJR Am J Roentgenol 179:763–768PubMedGoogle Scholar
  83. 83.
    Song JH, Francis IR, Platt JF et al (2001) Bladder tumor detection at virtual cystoscopy. Radiology 218:95–100PubMedGoogle Scholar
  84. 84.
    Ohashi K, El-Khoury GY, Bennett DL et al (2005) Orthopedic hardware complications diagnosed with multi-detector row CT. Radiology 237(2):570–757CrossRefPubMedGoogle Scholar
  85. 85.
    Holly LT (2006) Image-guided spinal surgery. Int J Med Robot 2(1): 7–15PubMedGoogle Scholar
  86. 86.
    Matsumoto M, Kodama N, Endo Y et al (2007) Dynamic 3-D-CT angiography. AJNR Am J Neuroradiol 28:299–304PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Unni K. Udayasankar
    • 1
  • Zaheerabbas Momin
    • 1
  • William C. Small
    • 1
  1. 1.Division of Abdominal Imaging Department of RadiologyEmory University School of MedicineAtlantaUSA

Personalised recommendations