MDCT pp 31-41 | Cite as

MDCT Radiation Dose: Recent Advances

  • Mannudeep K. Kalra


The emergence of multi-detector-row computed tomography (MDCT) scanners in radiology practice has increased the number of CT studies being performed for different clinical applications. This has raised concerns about the risk of radiationinduced cancer following low-dose exposure associated with CT scanning. In order to optimize the radiation dose necessitated by MDCT scanning, it is important to understand the basic dose quantities and scanning parameters that can be modified to optimize radiation exposure. These aspects, together with the strategies for CT dose reduction, are discussed in this chapter. In addition, radiation dose considerations for cardiac CT are examined.


Automate Exposure Control Metal Artifact Reduction Automatic Tube Current Modulation MSCT Scanner Noise Reduction Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McNitt-Gray MF (2002) AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT. Radiographics 22:1541–1553CrossRefPubMedGoogle Scholar
  2. 2.
    Rehani MM, Berry M (2000) Radiation doses in computed tomography. The increasing doses of radiation need to be controlled. BMJ 320:593–594CrossRefPubMedGoogle Scholar
  3. 3.
    Kalra MK, Maher MM. Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628CrossRefPubMedGoogle Scholar
  4. 4.
    NAS/NRC (1990) National Academy of Sciences/National Research Council. Health effects of exposure to low levels of ionizing radiation. Committee on the Biological Effects of Ionizing Radiation. BEIR V. Washington, DC. National Academy PressGoogle Scholar
  5. 5.
    Hamberg LM, Rhea JT, Hunter GJ, Thrall JH (2003) Multi-detector row CT: radiation dose characteristics. Radiology 226:762–772CrossRefPubMedGoogle Scholar
  6. 6.
    Kalra MK, Prasad S, Saini S et al (2002) Clinical comparison of standard-dose and 50% reduceddose abdominal CT: effect on image quality. AJR Am J Roentgenol 179:1101–1106PubMedGoogle Scholar
  7. 7.
    Kalra MK, Maher MM, Prasad SR et al (2003) Correlation of patient weight and cross-sectional dimensions with subjective image quality at standard dose abdominal CT. Korean J Radiol 4:234–238CrossRefPubMedGoogle Scholar
  8. 8.
    Frush DP, Soden B, Frush KS, Lowry C (2002) Improved pediatric multidetector body CT using a size-based color-coded format. AJR Am J Roentgenol 178:721–726PubMedGoogle Scholar
  9. 9.
    Prasad SR, Wittram C, Shepard JA et al (2002) Standard-dose and 50%-reduced-dose chest CT: comparing the effect on image quality. AJR Am J Roentgenol 179:461–465PubMedGoogle Scholar
  10. 10.
    Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233:649–657CrossRefPubMedGoogle Scholar
  11. 11.
    Kalra MK, Maher MM, D’Souza RV et al (2005) Detection of urinary tract stones at low-radiation-dose CT with z-axis automatic tube current modulation: phantom and clinical studies. Radiology 235:523–529CrossRefPubMedGoogle Scholar
  12. 12.
    Rizzo S, Kalra MK, Schmidt B et al (2007) Combined modulation and angular modulation techniques in CT scanning of abdomen and pelvis. AJR Am J Roentgenol (in press)Google Scholar
  13. 13.
    Mulkens TH, Bellinck P, Baeyaert M et al (2005) Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 237:213–223CrossRefPubMedGoogle Scholar
  14. 14.
    Kalra MK, Maher MM, Kamath RS et al (2004) Sixteen-detector row CT of abdomen and pelvis: study for optimization of Z-axis modulation technique performed in 153 patients. Radiology 233:241–249CrossRefPubMedGoogle Scholar
  15. 15.
    Bahner ML, Bengel A, Brix G et al (2005) Improved vascular opacification in cerebral computed tomography angiography with 80 kVp. Invest Radiol 40:229–234CrossRefPubMedGoogle Scholar
  16. 16.
    Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231:169–174CrossRefPubMedGoogle Scholar
  17. 17.
    Wintersperger B, Jakobs T, Herzog P et al (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341CrossRefPubMedGoogle Scholar
  18. 18.
    Kalra MK, Maher MM, Toth TL et al (2004) Radiation from “extra” images acquired with abdominal and/or pelvic CT: effect of automatic tube current modulation. Radiology 232:409–414CrossRefPubMedGoogle Scholar
  19. 19.
    Namasivayam S, Mittal P, Small WC, Kalra MK (2006) radiation exposure and diagnostic usefulness of “duplicate” CT images. Scientific paper presented at the 87th Annual meeting of the Radiological Society of North America, Chicago, ILGoogle Scholar
  20. 20.
    Namasivayam S, Kalra MK, Waldrop S et al (2006) single phase mesenteric MDCT angiography using a split-bolus contrast injection technique: comparison with biphasic MDCT protocol using single bolus contrast injection. Scientific paper presented at the 87th Annual meeting of the Radiological Society of North America, Chicago, ILGoogle Scholar
  21. 21.
    Abdelmoumene A, Chevallier P, Chalaron M et al (2005) Detection of liver metastases under 2 cm: comparison of different acquisition protocols in four row multidetector-CT (MDCT). Eur Radiol 15:1881–1887CrossRefPubMedGoogle Scholar
  22. 22.
    Power NP, Pryor MD, Martin A et al (2002) Optimization of scanning parameters for CT colonography. BJR 75:401–408PubMedGoogle Scholar
  23. 23.
    Laghi A, Iannaccone R, Mangiapane F et al (2003) Experimental colonic phantom for the evaluation of the optimal scanning technique for CT colonography using a multidetector spiral CT equipment. Eur Radiol 13:459–466PubMedGoogle Scholar
  24. 24.
    Rehani MM, Bongartz G, Kalender W et al (2000) Managing X-ray dose in computed tomography. ICRP Special Task Force Report. Annals of the ICRP 30:7–45Google Scholar
  25. 25.
    Beaconsfield T, Nicholson R, Thornton A, Al-Kutoubi A (1998) Would thyroid and breast shielding be beneficial in CT of the head? Eur Radiol 8:664–667CrossRefPubMedGoogle Scholar
  26. 26.
    Geleijns J, Salvado Artells M, Veldkamp WJ et al (2006) Quantitative assessment of selective in-plane shielding of tissues in computed tomography through evaluation of absorbed dose and image quality. Eur Radiol 16:2334–2340CrossRefPubMedGoogle Scholar
  27. 27.
    Li J, Udayasankar UK, Toth TL, et al (2007) Automatic patient centering for MDCT: effect on radiation dose. AJR 188:547–552CrossRefPubMedGoogle Scholar
  28. 28.
    Mahnken AH, Raupach R, Wildberger JE et al (2007) A new algorithm for metal artifact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement. Invest Radiol 38:769–775CrossRefGoogle Scholar
  29. 29.
    Watzke O, Kalender WA (2004) A pragmatic approach to metal artifact reduction in CT: merging of metal artifact reduced images. Eur Radiol 14:849–856CrossRefPubMedGoogle Scholar
  30. 30.
    Kalra MK, Maher MM, Blake MA et al (2004) Detection and characterization of lesions on low-radiation-dose abdominal CT images postprocessed with noise reduction filters. Radiology 232:791–797CrossRefPubMedGoogle Scholar
  31. 31.
    Kalra MK, Maher MM, Sahani DV et al (2003) Lowdose CT of the abdomen: evaluation of image improvement with use of noise reduction filters plot study. Radiology 228:251–256CrossRefPubMedGoogle Scholar
  32. 32.
    Kalra MK, Wittram C, Maher MM et al (2003) Can noise reduction filters improve low-radiation-dose chest CT images? Pilot study. Radiology 228:257–264CrossRefPubMedGoogle Scholar
  33. 33.
    Rizzo SM, Kalra MK, Schmidt B et al (2005) CT images of abdomen and pelvis: effect of nonlinear three-dimensional optimized reconstruction algorithm on image quality and lesion characteristics. Radiology 237:309–315CrossRefPubMedGoogle Scholar
  34. 34.
    Thomas CK, Muhlenbruch G, Wildberger JE et al (2006) Coronary artery calcium scoring with multislice computed tomography: in vitro assessment of a low tube voltage protocol. Invest Radiol 41:668–673CrossRefPubMedGoogle Scholar
  35. 35.
    Takahashi N, Bae KT (2003) Quantification of coronary artery calcium with multi-detector row CT: assessing interscan variability with different tube currents pilot study. Radiology 228:101–106CrossRefPubMedGoogle Scholar
  36. 36.
    Rosol M, Sachdev K, Enzweiler CN et al (2006) A novel model to test accuracy and reproducibility of MDCT scan protocols for coronary calcium in vivo. Int J Cardiovasc Imaging 22:111–118CrossRefPubMedGoogle Scholar
  37. 37.
    Paul JF, Abada HT (2007) Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol [Epub ahead of print]Google Scholar
  38. 38.
    Deetjen AG, Mollmann S, Conradi G et al (2007) Use of Automatic exposure control in multislice computed tomography of the coronaries: Comparison of 16-slice and 64-slice scanner data with conventional coronary angiography. Heart [Epub ahead of print]Google Scholar
  39. 39.
    Hollingsworth C, Frush DP, Cross M, Lucaya J (2003) Helical CT of the body: a survey of techniques used for pediatric patients. AJR Am J Roentgenol 180:401–406PubMedGoogle Scholar
  40. 40.
    Cohnen M, Poll LJ, Puettmann C et al (2003) Effective doses in standard protocols for multi-slice CT scanning. Eur Radiol 13:1148–1153PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Mannudeep K. Kalra
    • 1
  1. 1.Department of RadiologyMassachusetts General HospitalBostonUSA

Personalised recommendations