Advertisement

MDCT pp 295-309 | Cite as

MDCT Perfusion in Acute Stroke

  • Sanjay K. Shetty
  • Michael H. Lev

Abstract

Acute cerebrovascular stroke ranks amongst the foremost causes of morbidity and mortality in the world [1]. In acute settings, the rapid evaluation of acute stroke is invaluable due to the ability to treat patients with thrombolytics. In addition to anatomic information about the acute stroke, state-of-the-art radiologic techniques can also provide critical information about capillary-level hemodynamics and the brain parenchyma. Computed tomography perfusion (CTP) provides this information and can help in understanding the pathophysiology of stroke [2, 3, 4, 5]. CTP helps the physician to identify critically ischemic or irreversibly infarcted tissue (“core”) and to identify severely ischemic but potentially salvageable tissue (“penumbra”). This information can guide triage and management in actue stroke.

Keywords

Acute Stroke Cerebral Blood Volume Mean Transit Time Compute Tomography Perfusion Ischemic Penumbra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heart disease and stroke statistics — 2004 update (2003) American Heart Association, 2003, DallasGoogle Scholar
  2. 2.
    Lev MH, Farkas J, Rodriguez VR et al (2001) CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr 25 (4):520–528CrossRefPubMedGoogle Scholar
  3. 3.
    Lev MH, Gonzalez RG (2002) CT Angiography and CT Perfusion Imaging. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic Press, San Diego, pp 427–484Google Scholar
  4. 4.
    Wildermuth S, Knauth M, Brandt T et al (1998) Role of CT angiography in patient selection for thrombolytic therapy in acute hemispheric stroke. Stroke 9(5):935–938Google Scholar
  5. 5.
    Knauth M, von Kummer R, Jansen O et al (1997) Potential of CT angiography in acute ischemic stroke. AJNR Am J Neuroradiol 18(6):1001–1010PubMedGoogle Scholar
  6. 6.
    Albers GW (1999) Expanding the window for thrombolytic therapy in acute stroke. The potential role of acute MRI for patient selection. Stroke 30(10):2230–2237PubMedGoogle Scholar
  7. 7.
    Barber PA, Demchuk AM, Zhang J, Buchan AM (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. AS-PECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 355(9216):1670–1674.CrossRefPubMedGoogle Scholar
  8. 8.
    Broderick JP, Lu M, Kothari R et al (2000) Finding the most powerful measures of the effectiveness of tissue plasminogen activator in the NINDS tPA stroke trial. Stroke 31(10):2335–2341PubMedGoogle Scholar
  9. 9.
    Schellinger PD, Jansen O, Fiebach JB et al (2000) Monitoring intravenous recombinant tissue plasminogen activator thrombolysis for acute ischemic stroke with diffusion and perfusion MRI. Stroke 31(6):1318–1328PubMedGoogle Scholar
  10. 10.
    Tong D, Yenari M, Albers G et al (1998) Correlation of perfusion-and diffusion-weighted MRI with NIHSS Score in acute (<6.5 hour) ischemic stroke. Neurology 50(4):864–870PubMedGoogle Scholar
  11. 11.
    Berzin T, Lev M, Goodman D et al (2001) CT perfusion imaging versus MR diffusion-weighted imaging: prediction of final infarct size in hyperacute stroke [abstract]. Stroke 32:317Google Scholar
  12. 12.
    Warach S (2001) New imaging strategies for patient selection for thrombolytic and neuroprotective therapies. Neurology 57[Suppl 2]:48–52Google Scholar
  13. 13.
    Von Kummer R, Holle R, Grzyska U, Hofmann E et al (1996) Interobserve agreement in assessing early CT signs of middle cerebral artery infarction. AJNR Am J Neuroradiol 17:1743–1748Google Scholar
  14. 14.
    Grotta JC, Chiu D, Lu M et al (1999) Agreement and variability in the interpretation of early CT changes in stroke patients qualifying for intravenous rtPA therapy. Stroke 30(8):1528–1533PubMedGoogle Scholar
  15. 15.
    Von Kummer R, Allen KL, Holle R et al (1997) Acute stroke: usefulness of early CT findings before thrombolytic therapy. Radiology 205(2):327–333Google Scholar
  16. 16.
    Von Kummer R (2003) Early major ischemic changes on computed tomography should preclude use of tissue plasminogen activator. Stroke 34(3):820–821CrossRefGoogle Scholar
  17. 17.
    Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography. Radiology 137:679–686PubMedGoogle Scholar
  18. 18.
    Hunter GJ, Hamberg LM, Ponzo JA et al (1998) Assessment of cerebral perfusion and arterial anatomy in hyperacute stroke with three-dimensional functional CT: Early clinical results. AJNR Am J Neuroradiol 19:29–37PubMedGoogle Scholar
  19. 19.
    Hamberg LM, Hunter GJ, Kierstead D et al (1996) Measurement of cerebral blood volume with substraction three-dimensional functional CT. AJNR Am J Neuroradiol 17(10):1861–1869PubMedGoogle Scholar
  20. 20.
    Bae KT, Tran HQ, Heiken JP (2000) Multiphasic injection method for uniform prolonged vascular enhancement at CT angiography: pharmacokinetic analysis and experimental porcine model. Radiology 216(3):872–880PubMedGoogle Scholar
  21. 21.
    Fleischmann D, Rubin GD, Bankier AA, Hittmair K (2000) Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology 214(2):363–371PubMedGoogle Scholar
  22. 22.
    Wintermark M, Reichhart M, Thiran JP et al (2002) Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 51(41):417–432CrossRefPubMedGoogle Scholar
  23. 23.
    Aksoy FG, Lev MH (2000) Dynamic contrast-enhanced brain perfusion imaging: technique and clinical applications. Semin Ultrasound CT MR 21(6):462–477CrossRefPubMedGoogle Scholar
  24. 24.
    Eastwood JD, Lev MH, Provenzale JM (2003) Perfusion CT with iodinated contrast material. AJR Am J Roentgenol 180(1):3–12PubMedGoogle Scholar
  25. 25.
    Lev MH, Kulke SF, Weisskoff RM et al (1997) Dose dependence of signal to noise ration in functional MRI of cerebral blood volume mapping with sprodiamide. J Magn Reson Imaging 7:523–527CrossRefPubMedGoogle Scholar
  26. 26.
    Coutts SB, Simon JE, Tomanek AI et al (2003) Reliability of assessing percentage of diffusion-perfusion mismatch. Stroke 34(7):1681–1683CrossRefPubMedGoogle Scholar
  27. 27.
    Roccatagliata L, Lev MH, Mehta N et al (2003) Estimating the size of ischemic regions on CT perfusion maps in acute stroke: is freehand visual segmentation sufficient? In: Proceedings of the 89th Scientific Assembly and Annual Meeting of the Radiological Society of North America, 2003, Chicago, p. 1929Google Scholar
  28. 28.
    Mullins ME, Lev MH, Bove P et al (2004) Comparison of image quality between conventional and lowdose nonenhanced head CT. AJNR Am J Neuroradiol 25(4):533–538PubMedGoogle Scholar
  29. 29.
    Villringer A, Rosen BR, Belliveau JW et al (1988) Dynamic imaging with lanthanide chelates in normal brain: Contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174CrossRefPubMedGoogle Scholar
  30. 30.
    Meier P, Zieler K (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744PubMedGoogle Scholar
  31. 31.
    Roberts G, Larson K (1973) The interpretation of mean transit time measurements for multi-phase tissue systems. J Theor Biol 39:447–475CrossRefPubMedGoogle Scholar
  32. 32.
    Cenic A, Nabavi DG, Craen RA et al (1999) Dynamic CT measurement of cerebral blood flow: a validation study. AJNR Am J Neuroradiology 20(1):63–73Google Scholar
  33. 33.
    Cenic A, Nabavi DG, Craen RA et al (2000) A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. AJNR Am J Neuroradiol 21(3):462–470PubMedGoogle Scholar
  34. 34.
    Nabavi DG, Cenic A, Dool J et al (1999) Quantitative assessment of cerebral hemodynamics using CT: stability, accuracy, and precision studies in dogs. J Comput Assist Tomogr 23(4):506–515CrossRefPubMedGoogle Scholar
  35. 35.
    Nabavi DG, Cenic A, Craen RA et al (1999) CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology 213(1):141–149PubMedGoogle Scholar
  36. 36.
    Nabavi DG, Cenic A, Henderson S et al (2001) Perfusion mapping using computed tomography allows accurate prediction of cerebral infarction in experimental brain ischemia. Stroke 32(1):175–183PubMedGoogle Scholar
  37. 37.
    Ostergaard L, Weisskoff RM, Chesler DA et al (1996) High resolution of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical Approach ad STatistical Analysis. Magnetic Resonance Imaging in Medicine 36(5):715–725CrossRefGoogle Scholar
  38. 38.
    Ostergaard L, Chesler DA, Weisskoff RM et al (1999) Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab 19(6):690–699CrossRefPubMedGoogle Scholar
  39. 39.
    Wintermark M, Thiran JP, Maeder P et al (2001) Simutaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR Am J Neuroradiol 22(5):905–914PubMedGoogle Scholar
  40. 40.
    Wirestam R, Andersson L, Ostergaard L et al (2000) Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn Reson Med 43(5):691–700CrossRefPubMedGoogle Scholar
  41. 41.
    Wintermark M, Maeder P, Thiran JP (2001) Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 11(7):1220–1230CrossRefPubMedGoogle Scholar
  42. 42.
    Sanelli PC, Lev MH, Eastwood JD et al (2004) The effect of varying user-selected input parameters on quantitative values in CT perfusion maps. Academic Radiology 11(10):1085–1092CrossRefPubMedGoogle Scholar
  43. 43.
    Hacke W, Albers G, Al-Rawi Y et al (2005) The Desmo teplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 36(1):66–73CrossRefPubMedGoogle Scholar
  44. 44.
    Schellinger PD, Fiebach JB, Hacke W (2003) Imaging-based decision making in thrombolytic therapy for ischemic stroke: present status. Stroke 34(2):575–583CrossRefPubMedGoogle Scholar
  45. 45.
    Rother J (2003) Imaging-guided extension of the time window: ready for application in experienced stroke centers. Stroke 34(2):575–583CrossRefPubMedGoogle Scholar
  46. 46.
    Rother J, Schellinger PD, Gass A et al (2002) Effect of intravenous thrombolysis on MRI parameters and functional outcome in acute stroke <6 hours. Stroke 33(10):2438–2445CrossRefPubMedGoogle Scholar
  47. 47.
    Parsons MW, Barber PA, Chalk J et al (2002) Diffusion-and perfusion-weighted MRI response to thrombolysis in stroke. Ann Neurol 51(1):28–37CrossRefPubMedGoogle Scholar
  48. 48.
    Lev MH, Segal AZ, Farkas J et al (2001) Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke 32(9):2021–2028CrossRefPubMedGoogle Scholar
  49. 49.
    Schramm P, Schellinger PD, Fiebach JB et al (2002). Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke 33(10):2426–2432CrossRefPubMedGoogle Scholar
  50. 50.
    Schramm P, Schellinger PD, Klotz E et al (2004) Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours’ duration. Stroke 35:1652–1658CrossRefPubMedGoogle Scholar
  51. 51.
    Kidwell C, Saver JL, Mattiello J et al (2000) Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol 47(4):462–469CrossRefPubMedGoogle Scholar
  52. 52.
    Kidwell CS, Saver JL, Starkman S et al (2002) Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol 52(6):698–703CrossRefPubMedGoogle Scholar
  53. 53.
    Wintermark M, Fischbein NJ, Smith WS et al (2005) Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. AJNR Am J Neuroradiol 26(1):104–112PubMedGoogle Scholar
  54. 54.
    Bisdas S, Donnerstag F, Ahl B (2004) Comparison of perfusion computed tomography with diffusion-weighted magnetic resonance imaging in hyperacute ischemic stroke. J Comput Assist Tomogr 28(6):747–755CrossRefPubMedGoogle Scholar
  55. 55.
    Warach S (2003) Measurement of the ischemic penumbra with MRI: it’s about time. Stroke 34(10):2533–2534CrossRefPubMedGoogle Scholar
  56. 56.
    Wu O, Koroshetz WJ, Ostergaard L et al (2001) Predicting tissue outcome in acute human cerebral ischemia using combined diffusion-and perfusion-weighted MR imaging. Stroke 32(4):933–942PubMedGoogle Scholar
  57. 57.
    Barber PA, Darby DG, Desmond PM et al (1998) Prediction of stroke outcome with echoplanar perfusion-and diffusion-weighted MRI. Neurolology 51(2):418–426Google Scholar
  58. 58.
    Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia — the ischemic penumbra. Stroke 12(6):723–725PubMedGoogle Scholar
  59. 59.
    Sorensen AG, Buonanno FS, Gonzalez RG et al (1996) Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 199(2):391–401PubMedGoogle Scholar
  60. 60.
    Sunshine JL, Tarr RW, Lanzier CF et al (1999) Hyperacute stroke: ultrafast MR imaging to triage patients prior to therapy. RAdiology 212:325–332PubMedGoogle Scholar
  61. 61.
    Schlaug G, Benfeld A, Baird AE et al (1999) The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 53(7):1528–1537PubMedGoogle Scholar
  62. 62.
    Mehta N, Lev MH, Mullins ME et al (2003) Prediction of final infarct size in acute stroke using cerebral blood flow/cerebral blood volume mismatch: added value of quantitative first pass CT perfusion imaging in successfully treated versus unsuccessfully treated/un treated patients. In: Proceedings of the 41st Annual Meeting of the American Society of Neuroradiology, 2003, WashingtonGoogle Scholar
  63. 63.
    Rohl L, Ostergaard L, Simonsen CZ et al (2001) Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient. Stroke 32(5):1140–1146PubMedGoogle Scholar
  64. 64.
    Grandin CB, Duprez TP, Smith AM et al (2001) Usefulness of magnetic resonance-derived quantitative measurements of cerebral blood flow and volume in prediction of infarct growth in hyperacute stroke. Stroke 32(5):1147–1153PubMedGoogle Scholar
  65. 65.
    Schaefer PW, Ozsunar Y, He J et al (2003) Assessing tissue viability with MR diffusion and perfusion imaging. AJNR Am J Neuroradiol 24(3):436–443PubMedGoogle Scholar
  66. 66.
    Eastwood JD, Lev MH, Wintermark M et al (2003) Correlation of early dynamic CT perfusion imaging with whole-brain MR diffusion and perfusion imaging in acute hemispheric stroke. AJNR Am J Neuroradiol 24(9):1869–1875PubMedGoogle Scholar
  67. 67.
    Wintermark M, Reichhart M, Cuisenaire O et al (2002) Comparison of admission perfusion computed tomography and qualitative diffusion-and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 33(8):2025–2031CrossRefPubMedGoogle Scholar
  68. 68.
    Lev MH, Hunter GJ, Hamberg LM et al (2002) CT versus MR imaging in acute stroke: comparison of perfusion abnormalities at the infarct core. In: Proceedings of the 40th Annual Meeting of the American Society of Neuroradiology, 2002, VancouverGoogle Scholar
  69. 69.
    Lev MH (2003) CT versus MR for acute stroke imaging: is the “obvious” choice necessarily the correct one? AJNR Am J Neuroradiol 24(10):1930–1931PubMedGoogle Scholar
  70. 70.
    Heiss WD (2000) Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 20(9):1276–1293CrossRefPubMedGoogle Scholar
  71. 71.
    Jovin TG, Yonas H, Gebel JM et al (2003) The cortical ischemic core and not the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusion. Stroke 34(10):2426–2433CrossRefPubMedGoogle Scholar
  72. 72.
    Lev MH, Roccatagliata L, Murphy EK et al (2004) A CTA based, multivariable, “benefit of recanalization” model for acute stroke triage: core infarct size on CTA source images independently predicts outcome. In: Proceedings of the 42nd Annual Meeting of the American Society of Neuroradiology, 2004, SeattleGoogle Scholar
  73. 73.
    Suarez J, Sunshine J, Tarr R et al (1999) Predictors of clinical improvement, angiographic recanalization, and intracranial hemorrhage after intra-arterial thrombolysis for acute ischemic stroke. Stroke 30:2094–2100PubMedGoogle Scholar
  74. 74.
    Molina CA, Alexandrov AV, Demchuk AM et al (2004) Improving the predictive accuracy of recanalization on stroke outcome in patients treated with tissue plasminogen activator. Stroke 35(1):151–156CrossRefPubMedGoogle Scholar
  75. 75.
    Baird AE, Dambrosia J, Janket S et al (2001) A three-item scale for the early prediction of stroke recovery. Lancet 357(9274):2095–2099CrossRefPubMedGoogle Scholar
  76. 76.
    Nighoghossian N, Hermier M, Adeleine P et al (2003) Baseline magnetic resonance imaging parameters and stroke outcome in patients treated by intravenous tissue plasminogen activator. Stroke 34(2):458–463CrossRefPubMedGoogle Scholar
  77. 77.
    Swap C, Lev M, McDonald C et al (2002) Degree of oligemia by perfusion-weighted CT and risk of hemorrhage after IA thrombolysis. In: Stroke — Proceedings of the 27th International Conference on Stroke and Cerebral Circulation, 2002, San AntonioGoogle Scholar
  78. 78.
    Ogasawa K, Ogawa A, Euzura M et al (2001) Brain single-photon emission CT studies using 99mTc-HMPAO and 99mTc-ECD early after recanalization by local intraarterial thrombolysis in patients with acute embolic middle cerebral artery occlusion. AJNR Am J Neuroradiol 22(1):48–53Google Scholar
  79. 79.
    Ueda T, Sasaki S, Yuh W (1999) Outcome in acute stroke with successful intra-arterial thrombolysis procedure and predictive value of initial single-photon emission-computed tomography. J Cereb Blood Flow Metab 19:99–108CrossRefPubMedGoogle Scholar
  80. 80.
    Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulatinos using singular value decomposition. Magn Reson Med 44(3):466–473CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Sanjay K. Shetty
    • 1
  • Michael H. Lev
    • 2
  1. 1.Department of Radiology Emory University School of MedicineEmory University HospitalAtlantaUSA
  2. 2.Emergency Neuroradiology and Neurovascular LabMassachusetts General HospitalBostonUSA

Personalised recommendations