Skip to main content
Book cover

MDCT pp 269–275Cite as

Coronary CTA for Stent Evaluation

  • Chapter
  • 1278 Accesses

Abstract

Stent placement is commonly used for the treatment of obstructive coronary artery disease. Initially, bare-metal stents were deployed to maintain vessel patency, but 21–36% of these stents developed in-stent re-stenosis (ISR) due to neointimal hyperplasia [1,2]. Neointimal hyperplasia is a normal reparative process that occurs after stent deployment and is usually not extensive enough to cause hemodynamic significant narrowing [3]. However, if there is sufficient cellular proliferation, hemodynamic stenosis may be significant enough to bring about recurrent ischemia [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moses JW, Leon MB, Popma JJ et al (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 349:1315–1323

    Article  CAS  PubMed  Google Scholar 

  2. Suttorp MJ, Laarman GJ, Rahel BM et al (2006) Primary Stenting of Totally Occluded Native Coronary Arteries II (PRISON II): a randomized comparison of bare metal stent implantation with sirolimuseluting stent implantation for the treatment of total coronary occlusions. Circulation 114:921–928

    Article  PubMed  Google Scholar 

  3. Grewe PH, Deneke T, Machraoui A et al (2000) Acute and chronic tissue response to coronary stent implantation: pathologic findings in human specimen. J Am Coll Cardiol 35:157–163

    Article  CAS  PubMed  Google Scholar 

  4. Stettler C, Wandel S, Allemann S et al (2007) Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 370:937–948

    Article  CAS  PubMed  Google Scholar 

  5. Adams DF, Abrams HL (1979) Complications of coronary arteriography: a follow-up report. Cardiovasc Radiol 2:89–96

    Article  CAS  PubMed  Google Scholar 

  6. Adams DF, Fraser DB, Abrams HL (1973) The complications of coronary arteriography. Circulation 48:609–618

    CAS  PubMed  Google Scholar 

  7. Manning WJ, Nezafat R, Appelbaum E et al (2007) Coronary magnetic resonance imaging. Cardiol Clin 25:141–170, vi

    Article  PubMed  Google Scholar 

  8. Dewey M, Teige F, Schnapauff D et al (2006) Combination of free-breathing and breathhold steadystate free precession magnetic resonance angiography for detection of coronary artery stenoses. J Magn Reson Imaging 23:674–681

    Article  PubMed  Google Scholar 

  9. Sakuma H, Ichikawa Y, Suzawa N et al (2005) Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology 237:316–321

    Article  PubMed  Google Scholar 

  10. Knollmann FD, Moller J, Gebert A et al (2004) Assessment of coronary artery stent patency by electron-beam CT. Eur Radiol 14:1341–1347

    Article  PubMed  Google Scholar 

  11. Pump H, Mohlenkamp S, Sehnert CA et al (2000) Coronary arterial stent patency: assessment with electron-beam CT. Radiology 214:447–452

    CAS  PubMed  Google Scholar 

  12. Mazzarotto P, Di Renzi P, Paluello GM et al (2006) Comparison between four-slice computed tomography and coronary angiography for the assessment of coronary stents. J Cardiovasc Med (Hagerstown) 7:328–334

    Google Scholar 

  13. Schuijf JD, Bax JJ, Jukema JW et al (2004) Feasibility of assessment of coronary stent patency using 16-slice computed tomography. Am J Cardiol 94:427–430

    Article  PubMed  Google Scholar 

  14. Seifarth H, Ozgun M, Raupach R et al (2006) 64-Versus 16-slice CT angiography for coronary artery stent assessment: in vitro experience. Invest Radiol 41:22–27

    Article  PubMed  Google Scholar 

  15. Wolf F, Feuchtner GM, Homolka P et al (2007) In vitro imaging of coronary artery stents: Are there differences between 16-and 64-slice CT scanners? Eur J Radiol (Epub ahead of print)

    Google Scholar 

  16. Cademartiri F, Schuijf JD, Pugliese F et al (2007) Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis. J Am Coll Cardiol 49:2204–2210

    Article  PubMed  Google Scholar 

  17. Jerrold T, Bushberg EML, Boone JM (1994) Essential physics of medical imaging. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  18. Lell MM, Panknin C, Saleh R et al (2007) Evaluation of coronary stents and stenoses at different heart rates with dual source spiral CT (DSCT). Invest Radiol 42:536–541

    Article  PubMed  Google Scholar 

  19. Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24:1679–1691

    Article  PubMed  Google Scholar 

  20. Sirineni GK, Kalra MK, Pottala K et al (2006) Effect of contrast concentration, tube potential and reconstruction kernels on MDCT evaluation of coronary stents: an in vitro study. Int J Cardiovasc Imaging 23:253–263

    Article  PubMed  Google Scholar 

  21. Suzuki S, Furui S, Kuwahara S et al (2007) Assessment of coronary stent in vitro on multislice computed tomography angiography: improved in-stent visibility by the use of 140-kV tube voltage. J Comput Assist Tomogr 31:414–421

    Article  PubMed  Google Scholar 

  22. Maintz D, Seifarth H, Raupach R et al (2006) 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur Radiol 16:818–826

    Article  PubMed  Google Scholar 

  23. Alles J, Mudde RF (2007) Beam hardening: analytical considerations of the effective attenuation coefficient of X-ray tomography. Med Phys 34:2882–2889

    Article  CAS  PubMed  Google Scholar 

  24. Hsieh J, Molthen RC, Dawson CA et al (2000) An iterative approach to the beam hardening correction in cone beam CT. Med Phys 27:23–29

    Article  CAS  PubMed  Google Scholar 

  25. Shikhaliev PM (2005) Beam hardening artefacts in computed tomography with photon counting, charge integrating and energy weighting detectors: a simulation study. Phys Med Biol 50:5813–5827

    Article  PubMed  Google Scholar 

  26. Yan CH, Whalen RT, Beaupre GS et al (2000) Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction. IEEE Trans Med Imaging 19:1–11

    Article  CAS  PubMed  Google Scholar 

  27. Shim SS, Kim Y, Lim SM (2005) Improvement of image quality with beta-blocker premedication on ECG-gated 16-MDCT coronary angiography. AJR Am J Roentgenol 184:649–654

    PubMed  Google Scholar 

  28. Herzog C, Arning-Erb M, Zangos S et al (2006) Multi-detector row CT coronary angiography: influence of reconstruction technique and heart rate on image quality. Radiology 238:75–86

    Article  PubMed  Google Scholar 

  29. Matt D, Scheffel H, Leschka S et al (2007) Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol 189:567–573

    Article  PubMed  Google Scholar 

  30. Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: First experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747

    Article  PubMed  Google Scholar 

  31. Nieman K, Cademartiri F, Raaijmakers R et al (2003) Noninvasive angiographic evaluation of coronary stents with multi-slice spiral computed tomography. Herz 28:136–142

    Article  PubMed  Google Scholar 

  32. Maintz D, Seifarth H, Flohr T et al (2003) Improved coronary artery stent visualization and in-stent stenosis detection using 16-slice computed-tomography and dedicated image reconstruction technique. Invest Radiol 38:790–795

    PubMed  Google Scholar 

  33. Seifarth H, Raupach R, Schaller S et al (2005) Assessment of coronary artery stents using 16-slice MDCT angiography: evaluation of a dedicated reconstruction kernel and a noise reduction filter. Eur Radiol 15:721–726

    Article  PubMed  Google Scholar 

  34. Utsunomiya D, Awai K, Sakamoto T et al (2007) In vitro evaluation of metallic coronary artery stents with sub-millimeter multi-slice computed tomography using an ECG-gated cardiac phantom: relationship between in-stent visualization and stent type. Cardiology 107:254–260

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki S, Furui S, Kaminaga T et al (2005) Evaluation of coronary stents in vitro with CT angiography: effect of stent diameter, conyolution kernel, and vessel orientation to the z-axis. Circ J 69:1124–1131

    Article  PubMed  Google Scholar 

  36. Schepis T, Koepfli P, Leschka S et al (2007) Coronary artery stent geometry and in-stent contrast attenuation with 64-slice computed tomography. Eur Radiol 17:1464–1473

    Article  PubMed  Google Scholar 

  37. Ehara M, Kawai M, Surmely JF et al (2007) Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography: comparison with invasive coronary angiography. J Am Coll Cardiol 49:951–959

    Article  PubMed  Google Scholar 

  38. Gaspar T, Halon DA, Lewis BS et al (2005) Diagnosis of coronary in-stent restenosis with multidetector row spiral computed tomography. J Am Coll Cardiol 46:1573–1579

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Italia

About this chapter

Cite this chapter

Reddy Sirineni, G.K., Tigges, S., Stillman, A.E. (2008). Coronary CTA for Stent Evaluation. In: Kalra, M.K., Saini, S., Rubin, G.D. (eds) MDCT. Springer, Milano. https://doi.org/10.1007/978-88-470-0832-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0832-8_21

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0831-1

  • Online ISBN: 978-88-470-0832-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics