Advertisement

MDCT pp 269-275 | Cite as

Coronary CTA for Stent Evaluation

  • Gopi Kiran Reddy Sirineni
  • Stefan Tigges
  • Arthur E. Stillman

Abstract

Stent placement is commonly used for the treatment of obstructive coronary artery disease. Initially, bare-metal stents were deployed to maintain vessel patency, but 21–36% of these stents developed in-stent re-stenosis (ISR) due to neointimal hyperplasia [1,2]. Neointimal hyperplasia is a normal reparative process that occurs after stent deployment and is usually not extensive enough to cause hemodynamic significant narrowing [3]. However, if there is sufficient cellular proliferation, hemodynamic stenosis may be significant enough to bring about recurrent ischemia [3].

Keywords

Compute Tomography Coronary Angiography Invasive Coronary Angiography Neointimal Hyperplasia Stent Patency Stent Strut 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moses JW, Leon MB, Popma JJ et al (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 349:1315–1323CrossRefPubMedGoogle Scholar
  2. 2.
    Suttorp MJ, Laarman GJ, Rahel BM et al (2006) Primary Stenting of Totally Occluded Native Coronary Arteries II (PRISON II): a randomized comparison of bare metal stent implantation with sirolimuseluting stent implantation for the treatment of total coronary occlusions. Circulation 114:921–928CrossRefPubMedGoogle Scholar
  3. 3.
    Grewe PH, Deneke T, Machraoui A et al (2000) Acute and chronic tissue response to coronary stent implantation: pathologic findings in human specimen. J Am Coll Cardiol 35:157–163CrossRefPubMedGoogle Scholar
  4. 4.
    Stettler C, Wandel S, Allemann S et al (2007) Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 370:937–948CrossRefPubMedGoogle Scholar
  5. 5.
    Adams DF, Abrams HL (1979) Complications of coronary arteriography: a follow-up report. Cardiovasc Radiol 2:89–96CrossRefPubMedGoogle Scholar
  6. 6.
    Adams DF, Fraser DB, Abrams HL (1973) The complications of coronary arteriography. Circulation 48:609–618PubMedGoogle Scholar
  7. 7.
    Manning WJ, Nezafat R, Appelbaum E et al (2007) Coronary magnetic resonance imaging. Cardiol Clin 25:141–170, viCrossRefPubMedGoogle Scholar
  8. 8.
    Dewey M, Teige F, Schnapauff D et al (2006) Combination of free-breathing and breathhold steadystate free precession magnetic resonance angiography for detection of coronary artery stenoses. J Magn Reson Imaging 23:674–681CrossRefPubMedGoogle Scholar
  9. 9.
    Sakuma H, Ichikawa Y, Suzawa N et al (2005) Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology 237:316–321CrossRefPubMedGoogle Scholar
  10. 10.
    Knollmann FD, Moller J, Gebert A et al (2004) Assessment of coronary artery stent patency by electron-beam CT. Eur Radiol 14:1341–1347CrossRefPubMedGoogle Scholar
  11. 11.
    Pump H, Mohlenkamp S, Sehnert CA et al (2000) Coronary arterial stent patency: assessment with electron-beam CT. Radiology 214:447–452PubMedGoogle Scholar
  12. 12.
    Mazzarotto P, Di Renzi P, Paluello GM et al (2006) Comparison between four-slice computed tomography and coronary angiography for the assessment of coronary stents. J Cardiovasc Med (Hagerstown) 7:328–334Google Scholar
  13. 13.
    Schuijf JD, Bax JJ, Jukema JW et al (2004) Feasibility of assessment of coronary stent patency using 16-slice computed tomography. Am J Cardiol 94:427–430CrossRefPubMedGoogle Scholar
  14. 14.
    Seifarth H, Ozgun M, Raupach R et al (2006) 64-Versus 16-slice CT angiography for coronary artery stent assessment: in vitro experience. Invest Radiol 41:22–27CrossRefPubMedGoogle Scholar
  15. 15.
    Wolf F, Feuchtner GM, Homolka P et al (2007) In vitro imaging of coronary artery stents: Are there differences between 16-and 64-slice CT scanners? Eur J Radiol (Epub ahead of print)Google Scholar
  16. 16.
    Cademartiri F, Schuijf JD, Pugliese F et al (2007) Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis. J Am Coll Cardiol 49:2204–2210CrossRefPubMedGoogle Scholar
  17. 17.
    Jerrold T, Bushberg EML, Boone JM (1994) Essential physics of medical imaging. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  18. 18.
    Lell MM, Panknin C, Saleh R et al (2007) Evaluation of coronary stents and stenoses at different heart rates with dual source spiral CT (DSCT). Invest Radiol 42:536–541CrossRefPubMedGoogle Scholar
  19. 19.
    Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24:1679–1691CrossRefPubMedGoogle Scholar
  20. 20.
    Sirineni GK, Kalra MK, Pottala K et al (2006) Effect of contrast concentration, tube potential and reconstruction kernels on MDCT evaluation of coronary stents: an in vitro study. Int J Cardiovasc Imaging 23:253–263CrossRefPubMedGoogle Scholar
  21. 21.
    Suzuki S, Furui S, Kuwahara S et al (2007) Assessment of coronary stent in vitro on multislice computed tomography angiography: improved in-stent visibility by the use of 140-kV tube voltage. J Comput Assist Tomogr 31:414–421CrossRefPubMedGoogle Scholar
  22. 22.
    Maintz D, Seifarth H, Raupach R et al (2006) 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur Radiol 16:818–826CrossRefPubMedGoogle Scholar
  23. 23.
    Alles J, Mudde RF (2007) Beam hardening: analytical considerations of the effective attenuation coefficient of X-ray tomography. Med Phys 34:2882–2889CrossRefPubMedGoogle Scholar
  24. 24.
    Hsieh J, Molthen RC, Dawson CA et al (2000) An iterative approach to the beam hardening correction in cone beam CT. Med Phys 27:23–29CrossRefPubMedGoogle Scholar
  25. 25.
    Shikhaliev PM (2005) Beam hardening artefacts in computed tomography with photon counting, charge integrating and energy weighting detectors: a simulation study. Phys Med Biol 50:5813–5827CrossRefPubMedGoogle Scholar
  26. 26.
    Yan CH, Whalen RT, Beaupre GS et al (2000) Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction. IEEE Trans Med Imaging 19:1–11CrossRefPubMedGoogle Scholar
  27. 27.
    Shim SS, Kim Y, Lim SM (2005) Improvement of image quality with beta-blocker premedication on ECG-gated 16-MDCT coronary angiography. AJR Am J Roentgenol 184:649–654PubMedGoogle Scholar
  28. 28.
    Herzog C, Arning-Erb M, Zangos S et al (2006) Multi-detector row CT coronary angiography: influence of reconstruction technique and heart rate on image quality. Radiology 238:75–86CrossRefPubMedGoogle Scholar
  29. 29.
    Matt D, Scheffel H, Leschka S et al (2007) Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol 189:567–573CrossRefPubMedGoogle Scholar
  30. 30.
    Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: First experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747CrossRefPubMedGoogle Scholar
  31. 31.
    Nieman K, Cademartiri F, Raaijmakers R et al (2003) Noninvasive angiographic evaluation of coronary stents with multi-slice spiral computed tomography. Herz 28:136–142CrossRefPubMedGoogle Scholar
  32. 32.
    Maintz D, Seifarth H, Flohr T et al (2003) Improved coronary artery stent visualization and in-stent stenosis detection using 16-slice computed-tomography and dedicated image reconstruction technique. Invest Radiol 38:790–795PubMedGoogle Scholar
  33. 33.
    Seifarth H, Raupach R, Schaller S et al (2005) Assessment of coronary artery stents using 16-slice MDCT angiography: evaluation of a dedicated reconstruction kernel and a noise reduction filter. Eur Radiol 15:721–726CrossRefPubMedGoogle Scholar
  34. 34.
    Utsunomiya D, Awai K, Sakamoto T et al (2007) In vitro evaluation of metallic coronary artery stents with sub-millimeter multi-slice computed tomography using an ECG-gated cardiac phantom: relationship between in-stent visualization and stent type. Cardiology 107:254–260CrossRefPubMedGoogle Scholar
  35. 35.
    Suzuki S, Furui S, Kaminaga T et al (2005) Evaluation of coronary stents in vitro with CT angiography: effect of stent diameter, conyolution kernel, and vessel orientation to the z-axis. Circ J 69:1124–1131CrossRefPubMedGoogle Scholar
  36. 36.
    Schepis T, Koepfli P, Leschka S et al (2007) Coronary artery stent geometry and in-stent contrast attenuation with 64-slice computed tomography. Eur Radiol 17:1464–1473CrossRefPubMedGoogle Scholar
  37. 37.
    Ehara M, Kawai M, Surmely JF et al (2007) Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography: comparison with invasive coronary angiography. J Am Coll Cardiol 49:951–959CrossRefPubMedGoogle Scholar
  38. 38.
    Gaspar T, Halon DA, Lewis BS et al (2005) Diagnosis of coronary in-stent restenosis with multidetector row spiral computed tomography. J Am Coll Cardiol 46:1573–1579CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Gopi Kiran Reddy Sirineni
    • 1
  • Stefan Tigges
    • 1
  • Arthur E. Stillman
    • 1
  1. 1.Department of RadiologyEmory University School of Medicine Emory University HospitalAtlantaUSA

Personalised recommendations