Advertisement

MDCT pp 250-262 | Cite as

MDCT Angiography of Peripheral Arterial Disease

  • Geoffrey D. Rubin
  • Mannudeep K. Kalra

Abstract

Greater scan coverage and faster scanning with multi-detector row computed tomography (MDCT) has provided a unique opportunity for noninvasive and accurate imaging of vascular diseases of lower extremities [1]. This chapter describes scanning parameters, contrast medium administration features, image postprocessing techniques, and clinical applications of MDCT angiography (MDCTA).

Keywords

Peripheral Arterial Disease Maximum Intensity Projection Popliteal Artery Volume Rendering Peripheral Arterial Occlusive Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rubin GD, Schmidt AJ, Logan LJ et al (1999) Multidetector row CT angiography of lower extremity occlusive disease: a new application for CT scanning. Radiology 210(2):588Google Scholar
  2. 2.
    Fleischmann D, Hallett RL, Rubin GD (2006) CT angiography of peripheral arterial disease. J Vasc Interv Radiol 17(1):3–26PubMedCrossRefGoogle Scholar
  3. 3.
    Fleischmann D, Rubin GD, Paik DS et al (2000) Stair-step artifacts with single versus multiple detector-row helical CT. Radiology 216(1):185–196PubMedGoogle Scholar
  4. 4.
    Rubin GD, Schmidt AJ, Logan LJ, Sofilos MC (2001) Multi-detector row CT angiography of lower extremity arterial inflow and runoff: initial experience. Radiology 221(1):146–158CrossRefPubMedGoogle Scholar
  5. 5.
    Fleischmann D, Hittmair K (1999) Mathematical analysis of arterial enhancement and optimization of bolus geometry for CT angiography using the discrete fourier transform. J Comput Assist Tomogr 23(3):474–784CrossRefPubMedGoogle Scholar
  6. 6.
    Fleischmann D, Rubin GD, Bankier AA, Hittmair K (2000). Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology 214(2):363–371PubMedGoogle Scholar
  7. 7.
    Bron KM (1983) Femoral arteriography. In: Abrams HL (ed) Abrams angiography: vascular and interventional radiology, 3d edn. Little, Brown, Boston. pp 1835–1875Google Scholar
  8. 8.
    Versteylen RJ, Lampmann LE (1989) Knee time in femoral arteriography. AJR Am J Roentgenol 152(1):203PubMedGoogle Scholar
  9. 9.
    Fleischmann D, Rubin GD (2005) Quantification of intravenously administered contrast medium transit through the peripheral arteries: implications for CT angiography. Radiology 236(3):1076–1082CrossRefPubMedGoogle Scholar
  10. 10.
    Martin ML, Tay KH, Flak B et al (2003) Multidetector CT angiography of the aortoiliac system and lower extremities: a prospective comparison with digital subtraction angiography. AJR Am J Roentgenol 180(4):1085–1091PubMedGoogle Scholar
  11. 11.
    Ofer A, Nitecki SS, Linn S et al (2003) Multidetector CT angiography of peripheral vascular disease: a prospective comparison with intraarterial digital subtraction angiography. AJR Am J Roentgenol 180(3):719–724PubMedGoogle Scholar
  12. 12.
    Ota H, Takase K, Igarashi K et al (2004) MSCT compared with digital subtraction angiography for assessment of lower extremity arterial occlusive disease: importance of reviewing cross-sectional images. AJR Am J Roentgenol 182(1):201–209PubMedGoogle Scholar
  13. 13.
    Catalano C, Fraioli F, Laghi A et al (2004) Infrarenal aortic and lower-extremity arterial disease: diagnostic performance of multi-detector row CT angiography. Radiology 231(2):555–563CrossRefPubMedGoogle Scholar
  14. 14.
    Portugaller HR, Schoellnast H, Hausegger KA et al (2004) Multislice spiral CT angiography in peripheral arterial occlusive disease: a valuable tool in detecting significant arterial lumen narrowing? Eur Radiol 14(9):1681–1687CrossRefPubMedGoogle Scholar
  15. 15.
    Milne EN (1967) The significance of early venous filling during femoral arteriography. Radiology 88(3):513–518PubMedGoogle Scholar
  16. 16.
    Koechl A, Kanitsar A, Lomoschitz E et al (2003) Comprehensive assessment of peripheral arteries using multi-path curved planar reformation of CTA datasets. In: European Congress of Radiology, p 268Google Scholar
  17. 17.
    Kanitsar A, Fleischmann D, Wegenkittl R et al (2002) Curved planar reformation. In: Moorehead R, Gross M, Joy KI (eds) Proceedings of the 13th IEEE Visualization 2002 Conference, Boston, 27 October–11 November 2002. IEEE Computer Society, Piscataway, pp 37–44Google Scholar
  18. 18.
    Raman R, Napel S, Beaulieu CF et al (2002) Automated generation of curved planar reformations from volume data: method and evaluation. Radiology 223(1):275–280CrossRefPubMedGoogle Scholar
  19. 19.
    Visser K, Kock MCJM, Kuntz KM et al (2003) Cost-effectiveness targets for multi-detector row CT angiography in the work-up of patients with intermittent claudication. Radiology 227:647–656CrossRefPubMedGoogle Scholar
  20. 20.
    Surowiec SM, Davies MG, Eberly SW et al (2005) Percutaneous angioplasty and stenting of the superficial femoral artery. J Vasc Surg 41(2):269–278CrossRefPubMedGoogle Scholar
  21. 21.
    Clark TW, Groffsky JL, Soulen MC (2001) Predictors of long-term patency after femoropopliteal angioplasty: results from the STAR registry. J Vasc Interv Radiol 12(8):923–933CrossRefPubMedGoogle Scholar
  22. 22.
    Hirai T, Korogi Y, Ono K et al (2001) Maximum stenosis of extracranial internal carotid artery: effect of luminal morphology on stenosis measurement by using CT angiography and conventional DSA. Radiology 221(3):802–809CrossRefPubMedGoogle Scholar
  23. 23.
    Visser K, de Vries SO, Kitslaar PJ et al (2003) Cost-effectiveness of diagnostic imaging work-up and treatment for patients with intermittent claudication in The Netherlands. Eur J Vasc Endovasc Surg 25(3):213–223CrossRefPubMedGoogle Scholar
  24. 24.
    Rubin GD, Armerding MD, Dake MD, Napel S (2000) Cost identification of abdominal aortic aneurysm imaging by using time and motion analyses. Radiology 215(1):63–70PubMedGoogle Scholar
  25. 25.
    Rutherford RB, Baker JD, Ernst C et al (1997) Recommended standards for reports dealing with lower extremity ischemia: revised version. J Vasc Surg 26(3):517–538CrossRefPubMedGoogle Scholar
  26. 26.
    Costantini V, Lenti M (2002) Treatment of acute occlusion of peripheral arteries. Thromb Res 106(6):V285–V294CrossRefPubMedGoogle Scholar
  27. 27.
    Mills JL, Harris EJ, Taylor LM Jr et al (1990) The importance of routine surveillance of distal bypass grafts with duplex scanning: a study of 379 reversed vein grafts. J Vasc Surg 12(4):379–386; discussion 387–389CrossRefPubMedGoogle Scholar
  28. 28.
    Moody P, Gould DA, Harris PL (1990) Vein graft surveillance improves patency in femoropopliteal bypass. Eur J Vasc Surg 4(2):117–121CrossRefPubMedGoogle Scholar
  29. 29.
    Willmann JK, Mayer D, Banyai M et al (2003) Evaluation of peripheral arterial bypass grafts with multidetector row CT angiography: comparison with duplex US and digital subtraction angiography. Radiology 229(2):465–474CrossRefPubMedGoogle Scholar
  30. 30.
    Karcaaltincaba M, Akata D, Aydingoz U et al (2004) Three-dimensional MSCT angiography of the extremities: clinical applications with emphasis on musculoskeletal uses. AJR Am J Roentgenol 183(1):113–117PubMedGoogle Scholar
  31. 31.
    Whitley SP, Sandhu S, Cardozo A (2004) Preoperative vascular assessment of the lower limb for harvest of a fibular flap: the views of vascular surgeons in the United Kingdom. Br J Oral Maxillofac Surg 42(4):307–310CrossRefPubMedGoogle Scholar
  32. 32.
    Karanas YL, Antony A, Rubin G, Chang J (2004) Preoperative CT angiography for free fibula transfer. Microsurgery 24(2):125–127CrossRefPubMedGoogle Scholar
  33. 33.
    Chow L, Napoli A, Klein MB et al (2005) Vascular mapping with multidetector CT angiography prior to free-flap reconstruction. Radiology 237(1):353–360CrossRefPubMedGoogle Scholar
  34. 34.
    Klein MB, Karanas YL, Chow LC et al (2003) Early experience with computed tomographic angiography in microsurgical reconstruction. Plast Reconstr Surg 112(2):498–503.CrossRefPubMedGoogle Scholar
  35. 35.
    Takase K, Imakita S, Kuribayashi S et al (1997) Popliteal artery entrapment syndrome: aberrant origin of gastrocnemius muscle shown by 3D CT. J Comput Assist Tomogr 21(4):523–528CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Geoffrey D. Rubin
    • 1
  • Mannudeep K. Kalra
    • 2
  1. 1.Department of RadiologyStanford University School of MedicineStanfordUSA
  2. 2.Department of RadiologyMassachusetts General HospitalBostonUSA

Personalised recommendations