Advertisement

MDCT pp 166-208 | Cite as

PET/CT in Abdominal and Pelvic Malignancies: Principles and Practices

  • Michael Moore
  • Michael A. Blake

Abstract

Current multi-detector computed tomography (MDCT) allows for rapid acquisition of data sets with accurate anatomic detail and high spatial resolution. This provides valuable multi-planar information regarding the morphologic features and attenuation values of both normal anatomic structures and pathologic lesions. Since its introduction more than 25 years ago, CT has become widely used and can be considered the modality of choice for much cross-sectional imaging, particularly of oncologic entities. A limitation of CT, however, is its reliance on morphologic changes in the size, shape, or attenuation values of a structure to detect pathologic processes. Therefore, CT is less sensitive in the imaging of early disease processes and in the detection of disease recurrence in tissues that are already morphologically abnormal as a result of treatment.

Keywords

Positron Emission Tomography Cervical Cancer Esophageal Cancer Standardize Uptake Value Negative Predictive Value 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kapoor V, McCook BM, Torok FS (2005) An introduction to PET-CT imaging. Radiographics 24(2):523–543CrossRefGoogle Scholar
  2. 2.
    Wahl RL (2004) Why nearly all PET of abdominal and pelvic cancers will be performed as PET/CT. J Nucl Med 45(Suppl 1):82S–95SPubMedGoogle Scholar
  3. 3.
    Blodgett TM, Meltzer CC, Townsend DW (2007) PET/CT: form and function. Radiology 242(2):360–385. ReviewCrossRefPubMedGoogle Scholar
  4. 4.
    Beyer T, Townsend DW, Brun T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379PubMedGoogle Scholar
  5. 5.
    Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology. Radiology 231(2):305–332CrossRefPubMedGoogle Scholar
  6. 6.
    Conti M, Bendriem B, Casey M (2005) First experimental results of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol 50(19):4507–4026CrossRefPubMedGoogle Scholar
  7. 7.
    Crespo P, Shakirin G, Fiedler F (2007) Direct time-of-flight for quantitative, real-time in-beam PET: a concept and feasibility study. Phys Med Biol 52(23):6795–67811CrossRefPubMedGoogle Scholar
  8. 8.
    Nakamoto Y, Osman M, Cohade C et al (2002) PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuation-corrected images. J Nucl Med 43(9):1137–1143PubMedGoogle Scholar
  9. 9.
    Antoch G, Freudenberg LS, Beyer T et al (2004) To enhance or not to enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG-PET/CT. J Nucl Med 45(Suppl 1):56S–65SPubMedGoogle Scholar
  10. 10.
    Wong TZ, Paulson EK, Nelson RC et al (2007) Practical approach to diagnostic CT combined with PET. AJR Am J Roentgenol 188(3):622–629CrossRefPubMedGoogle Scholar
  11. 11.
    Berthelsen AK, Holm S, Loft A et al (2005) PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients. Eur J Nucl Med Mol Imaging 32(10):1167–1175CrossRefPubMedGoogle Scholar
  12. 12.
    Yau YY, Chan WS, Tam YM et al (2005) Application of intravenous contrast in PET/CT: does it really introduce significant attenuation correction error? J Nucl Med 46(2):283–291PubMedGoogle Scholar
  13. 13.
    Antoch G, Kuehl H, Kanja J et al (2004) Dual-modality PET/CT scanning with negative oral contrast agent to avoid artifacts: introduction and evaluation. Radiology 230(3):879–885CrossRefPubMedGoogle Scholar
  14. 14.
    Cohade C, Osman M, Nakamoto Y et al (2003) Initial experience with oral contrast in PET/CT: phantom and clinical studies. J Nucl Med 44(3):412–416PubMedGoogle Scholar
  15. 15.
    Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–84CrossRefPubMedGoogle Scholar
  16. 16.
    Kamel E, Hany TF, Burger C et al (2002) CT vs 68Ge attenuation correction in a combined PET/CT system: evaluation of the effect of lowering the CT tube current. Eur J Nucl Med Mol Imaging 29(3):346–350CrossRefPubMedGoogle Scholar
  17. 17.
    de Juan R, Seifert B, Berthold T et al (2004) Clinical evaluation of a breathing protocol for PET/CT. Eur Radiol 14(6):1118–23. Epub 2003 Dec 16CrossRefPubMedGoogle Scholar
  18. 18.
    Goerres GW, Burger C, Kamel E et al (2003) Respiration-induced attenuation artifact at PET/CT: technical considerations. Radiology 226(3):906–910CrossRefPubMedGoogle Scholar
  19. 19.
    Gilman MD, Fischman AJ, Krishnasetty V et al (2006) Optimal CT breathing protocol for combined thoracic PET/CT. AJR Am J Roentgenol 187(5): 1357–1360CrossRefPubMedGoogle Scholar
  20. 20.
    Blake MA, Singh A, Setty BN et al (2006) Pearls and pitfalls in interpretation of abdominal and pelvic PET-CT. Radiographics 26(5):1335–1353CrossRefPubMedGoogle Scholar
  21. 21.
    Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncologic diagnosis with FDG-PET imaging: physiologic and benign variants. Radiographics 19(1):61–77PubMedGoogle Scholar
  22. 22.
    Abdel-Dayem HM, Rosen G, El-Zeftawy H et al (1999) Fluorine-18 fluoro deoxyglucose splenic uptake from extramedullary hematopoiesis after granulocyte colony-stimulating factor stimulation. Clin Nucl Med 24(5):319–322CrossRefPubMedGoogle Scholar
  23. 23.
    Holmes RS, Vaughan TL (2007) Epidemiology and pathogenesis of esophageal cancer. Semin Radiat Oncol 17(1):2–9CrossRefPubMedGoogle Scholar
  24. 24.
    Yeung HW, Macapinlac HA, Mazumdar M et al (1999) FDG-PET in Esophageal Cancer. Incremental Value over Computed Tomography. Clin Positron Imaging 2(5):255–260CrossRefPubMedGoogle Scholar
  25. 25.
    Prabhakar HB, Sahani DV, Fischman AJ et al (2007) Bowel hot spots at PET-CT. Radiographics 27(1):145–159CrossRefPubMedGoogle Scholar
  26. 26.
    Bruzzi JF, Munden RF, Truong MT et al (2007) PET/CT of Esophageal Cancer: Its Role in Clinical Management. Radiographics 27(6):1635–1652CrossRefPubMedGoogle Scholar
  27. 27.
    Little SG, Rice TW, Bybel B et al (2007) Is FDG-PET indicated for superficial esophageal cancer? Eur J Cardiothorac Surg 31(5):791–796CrossRefPubMedGoogle Scholar
  28. 28.
    Lowe VJ, Booya F, Fletcher JG et al (2005) Comparison of positron emission tomography, computed tomography, and endoscopic ultrasound in the initial staging of patients with esophageal cancer. Mol Imaging Biol 7(6):422–430CrossRefPubMedGoogle Scholar
  29. 29.
    Pfau PR, Perlman SB, Stanko P et al (2007) The role and clinical value of EUS in a multimodality esophageal carcinoma staging program with CT and positron emission tomography. Gastrointest Endosc 65(3):377–384CrossRefPubMedGoogle Scholar
  30. 30.
    Bar-Shalom R, Guralnik L, Tsalic M et al (2005) The additional value of PET/CT over PET in FDG imaging of oesophageal cancer. Eur J Nucl Med Mol Imaging 32(8):918–924CrossRefPubMedGoogle Scholar
  31. 31.
    van Westreenen HL, Westerterp M, Bossuyt PM et al (2004) Systematic review of the staging performance of 18F-fluorodeoxyglucose positron emission tomography in esophageal cancer. J Clin Oncol 22(18):3805–3812CrossRefPubMedGoogle Scholar
  32. 32.
    Lerut T, Flamen P, Ectors N, Van Cutsem E, Peeters M, Hiele M, De Wever W, Coosemans W, Decker G, De Leyn P, Deneffe G, Van Raemdonck D, Mortelmans L. et al (2000) Histopathologic validation of lymph node staging with FDG-PET scan in cancer of the esophagus and gastroesophageal junction: A prospective study based on primary surgery with extensive lymphadenectomy. Ann Surg 232(6):743–752CrossRefPubMedGoogle Scholar
  33. 33.
    Katsoulis IE, Wong WL, Mattheou AK et al (2007) Fluorine-18 fluorodeoxyglucose positron emission tomography in the preoperative staging of thoracic oesophageal and gastro-oesophageal junction cancer. Int J Surg [Epub ahead of print]Google Scholar
  34. 34.
    Flanagan FL, Dehdashti F, Siegel BA et al (1997) Staging of esophageal cancer with 18F-fluorodeoxyglucose positron emission tomography. AJR Am J Roentgenol 168(2):417–424PubMedGoogle Scholar
  35. 35.
    Yuan SH, Yu JM, Yu YH et al (2007) [FDG-PET/CT versus PET alone for pre-surgical detection of lymph node metastasis in esophageal carcinoma] Zhonghua Zhong Liu Za Zhi 29(3):221–224PubMedGoogle Scholar
  36. 36.
    Rice TW (2000) Clinical staging of esophageal carcinoma. CT, EUS, and PET. Chest Surg Clin N Am 10(3):471–485PubMedGoogle Scholar
  37. 37.
    Kole AC, Plukker JT, Nieweg OE, Vaalburg W (1998) Positron emission tomography for staging of oesophageal and gastroesophageal malignancy. Br J Cancer 78(4):521–527PubMedGoogle Scholar
  38. 38.
    Duong CP, Demitriou H, Weih L et al (2006) Significant clinical impact and prognostic stratification provided by FDG-PET in the staging of oesophageal cancer. Eur J Nucl Med Mol Imaging 33(7):759–769CrossRefPubMedGoogle Scholar
  39. 39.
    Leong T, Everitt C, Yuen K et al (2006) A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer. Radiother Oncol 78(3):254–261CrossRefPubMedGoogle Scholar
  40. 40.
    Downey RJ, Akhurst T, Ilson D et al (2003) Whole body 18FDG-PET and the response of esophageal cancer to induction therapy: results of a prospective trial. J Clin Oncol 21(3):428–432CrossRefPubMedGoogle Scholar
  41. 41.
    Weber WA, Ott K, Becker K et al (2001) Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 19(12):3058–3065PubMedGoogle Scholar
  42. 42.
    Flamen P, Lerut A, Van Cutsem E et al (2000) The utility of positron emission tomography for the diagnosis and staging of recurrent esophageal cancer. J Thorac Cardiovasc Surg 120(6):1085–1092CrossRefPubMedGoogle Scholar
  43. 43.
    Westerterp M, van Westreenen HL, Reitsma JB et al (2005) Esophageal cancer: CT, endoscopic US, and FDG-PET for assessment of response to neoadjuvant therapy-systematic review. Radiology 236(3): 841–851CrossRefPubMedGoogle Scholar
  44. 44.
    Guo H, Zhu H, Xi Y et al (2007) Diagnostic and prognostic value of 18F-FDG-PET/CT for patients with suspected recurrence from squamous cell carcinoma of the esophagus. J Nucl Med 48(8):1251–1258CrossRefPubMedGoogle Scholar
  45. 45.
    Cerfolio RJ, Bryant AS, Ohja B et al (2005) The accuracy of endoscopic ultrasonography with fine-needle aspiration, integrated positron emission tomography with computed tomography, and computed tomography in restaging patients with esophageal cancer after neoadjuvant chemoradiotherapy. J Thorac Cardiovasc Surg 129(6):1232–1241CrossRefPubMedGoogle Scholar
  46. 46.
    Gutman F, Alberini JL, Wartski M et al (2005) Incidental Colonic Focal Lesions Detected by FDG-PET/CT. AJR Am J Roentgenol 185(2):495–500PubMedGoogle Scholar
  47. 47.
    Abdel-Nabi H, Doerr RJ, Lamonica DM et al (1998) Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology 206:755–760PubMedGoogle Scholar
  48. 48.
    Mukai M, Sadahiro S, Yasuda S et al (2000) Preoperative evaluation by whole-body 18F-fluorodeoxyglucose positron emission tomography in patients with primary colorectal cancer. Oncol Rep 7:85–87PubMedGoogle Scholar
  49. 49.
    Skibber JM, Minsky BD, Hoff PM (2001) Spread of colorectal cancer. In: De Vita VT, Hellman S, Rosenberg SA, (eds). 6th ed. Philadelphia: Lippincott William & Wilkins 1229–1230Google Scholar
  50. 50.
    Kamel IR. Cohade C, Neyman E et al (2004) Incremental value of CT in PET/CT of patients with colorectal carcinoma. Abdominal Imaging 29(6):663–668CrossRefPubMedGoogle Scholar
  51. 51.
    Tanaka K, Adam R, Shimada H et al (2003) Role of neoadjuvant chemotherapy in the treatment of multiple colorectal metastases to the liver. Br J Surg 90:963–969CrossRefPubMedGoogle Scholar
  52. 52.
    Valls C, Andía E, Sánchez A et al (2001) Hepatic metastases from colorectal cancer: preoperative detection and assessment of resectability with helical CT. Radiology 218(1):55–60PubMedGoogle Scholar
  53. 53.
    Kinkel K, Lu Y, Both M et al (2002) Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): A meta-analysis. Radiology 224:748–756CrossRefPubMedGoogle Scholar
  54. 54.
    Rohren EM, Paulson EK, Hagge R et al (2002) The role of F-18-FDG-PET in preoperative assessment of the liver in patients being considered for curative resection of hepatic metastases from colorectal cancer. Clin Nucl Med 27:550–555CrossRefPubMedGoogle Scholar
  55. 55.
    Kantorová I, Lipská L, Bêlohlávek O et al (2003) Routine (18)F-FDG-PET preoperative staging of colorectal cancer: comparison with conventional staging and its impact on treatment decision making. J Nucl Med 44(11):1784–1788PubMedGoogle Scholar
  56. 56.
    Sahani DV, Kalva SP, Fischman AJ et al (2005) Detection of Liver Metastases from Adenocarcinoma of Colon and Pancreas: Comparison of Mangafodipir Trisodium Enhanced Liver MRI and Whole Body FDG-PET. AJR Am J Roentgenol 185:239–246PubMedGoogle Scholar
  57. 57.
    Chua SC, Groves AM, Kayani I et al (2007) The impact of (18)F-FDG-PET/CT in patients with liver metastases. Eur J Nucl Med Mol Imaging 34(12):1906–1914CrossRefPubMedGoogle Scholar
  58. 58.
    Huebner RH, Park KC, Shepherd JE, Schwimmer J et al (2000) A meta-analysis of the literature for whole-body FDG-PET detection of recurrent colorectal cancer. J Nucl 41:1177–1189Google Scholar
  59. 59.
    Strasberg SM, Dehdashti F, Siegel BA et al (2001) Survival of patients evaluated by FDG-PET before hepatic resection for metastatic colorectal carcinoma: a prospective database study. Ann Surg 233:293–299CrossRefPubMedGoogle Scholar
  60. 60.
    Valk PE, Abella-Columma E, Haseman MK et al (1999) Whole-body PET imaging with [18F]fluorodeoxyglucose in management of recurrent colorectal cancer. Arch Surg 134:503–511CrossRefPubMedGoogle Scholar
  61. 61.
    Park IJ, Kim HC, Yu CS et al (2006) Efficacy of PET/CT in the accurate evaluation of primary colorectal carcinoma. Eur J Surg Oncol 32(9):941–947CrossRefPubMedGoogle Scholar
  62. 62.
    Hung GU, Shiau YC, Tsai SC et al (2001) Value of 18F-fluoro-2-deoxyglucose positron emission tomography in the evaluation of recurrent colorectal in the evaluation of recurrent colorectal cancer. Anticancer Res 21:1375–1378PubMedGoogle Scholar
  63. 63.
    Wiering B, Krabbe PF, Jager GJ et al (2005) The impact of fluor-18-deoxyglucose-positron emission tomography in the management of colorectal liver metastases. Cancer 104(12):2658–70CrossRefPubMedGoogle Scholar
  64. 64.
    Even-Sapir E, Parag Y, Lerman H et al (2004) Detection of recurrence in patients with rectal cancer: PET/CT after abdominoperineal or anterior resection. Radiology 232(3):815–822CrossRefPubMedGoogle Scholar
  65. 65.
    Cohade C, Osman M, Leal J, Wahl RL (2003) Direct comparison of (18)F-FDG-PET and PET/CT in patients with colorectal carcinoma. J Nucl Med 44(11):1797–1803PubMedGoogle Scholar
  66. 66.
    Chen LB, Tong JL, Song HZ (2007) (18)F-DG PET/CT in detection of recurrence and metastasis of colorectal cancer. World J Gastroenterol 13(37):5025–5029PubMedGoogle Scholar
  67. 67.
    Votrubova J, Belohlavek O, Jaruskova M et al (2006) The role of FDG-PET/CT in the detection of recurrent colorectal cancer. Eur J Nucl Med Mol Imaging 33(7):779–784CrossRefPubMedGoogle Scholar
  68. 68.
    Kim JH, Czernin J, Allen-Auerbach MS et al (2005) Comparison between 18F-FDG-PET, in-line PET/CT, and software fusion for restaging of recurrent colorectal cancer. J Nucl Med 46(4):587–595PubMedGoogle Scholar
  69. 69.
    Ciernik IF, Huser M, Burger C et al (2005) Automated functional image-guided radiation treatment planning for rectal cancer. Int J Radiat Oncol Biol Phys 62(3):893–900PubMedGoogle Scholar
  70. 70.
    Veit-Haibach P, Kuehle CA, Beyer T et al (2006) Diagnostic accuracy of colorectal cancer staging with whole-body PET/CT colonography. JAMA 296(21):2590–2600CrossRefPubMedGoogle Scholar
  71. 71.
    Gollub MJ, Akhurst T, Markowitz AJ et al (2007) Combined CT colonography and 18F-FDG-PET of colon polyps: potential technique for selective detection of cancer and precancerous lesions. AJR Am J Roentgenol (1):130–138CrossRefGoogle Scholar
  72. 72.
    Hillner BE, Liu D, Coleman RE et al (2007) The National Oncologic PET Registry (NOPR): design and analysis plan. J Nucl Med 43(11):1901–1908CrossRefGoogle Scholar
  73. 73.
    Yeoh KG (2007) How do we improve outcomes for gastric cancer. J Gastroenterol Hepatol 22(7):970–972CrossRefPubMedGoogle Scholar
  74. 74.
    Yeung HW, Macapinlac H, Karpeh M et al (2008) Accuracy of FDG-PET in Gastric Cancer. Preliminary Experience. Clin Positron Imaging 1(4):213–221CrossRefGoogle Scholar
  75. 75.
    Shoda H, Kakugawa Y, Saito D et al (2007) Evaluation of (18)F-2-deoxy-2-fluoro-glucose positron emission tomography for gastric cancer screening in asymptomatic individuals undergoing endoscopy. Br J Cancer 97(11):1493–1498CrossRefPubMedGoogle Scholar
  76. 76.
    Lim JS, Yun MJ, Kim MJ et al (2006) CT and PET in stomach cancer: preoperative staging and monitoring of response to therapy. Radiographics 26(1):143–156CrossRefPubMedGoogle Scholar
  77. 77.
    Imperiale A, Cimarelli S, Sellem DB et al (2006) Focal F-18 FDG uptake mimicking malignant gastric localizations disappearing after water ingestion on PET/CT images. Clin Nucl Med 31(12):835–837CrossRefPubMedGoogle Scholar
  78. 78.
    Stahl A, Ott K, Weber WA et al (2003) FDG-PET imaging of locally advanced gastric carcinomas: correlation with endoscopic and histopathological findings. Eur J Nucl Med Mol Imaging 30(2):288–295PubMedGoogle Scholar
  79. 79.
    Rosenbaum SJ, Stergar H, Antoch G et al (2006) Staging and follow-up of gastrointestinal tumors with PET/CT. Abdom Imaging 31(1):25–35CrossRefPubMedGoogle Scholar
  80. 80.
    Sun L, Ye HY, Zhang YH et al (2007) Epidermal growth factor receptor antibody plus recombinant human endostatin in treatment of hepatic metastases after remnant gastric cancer resection. World J Gastroenterol 13(45):6115–6118CrossRefPubMedGoogle Scholar
  81. 81.
    Herrmann K, Ott K, Buck AK et al (2007) Imaging Gastric Cancer with PET and the Radiotracers 18F-FLT and 18F-FDG: A Comparative Analysis. J Nucl Med [Epub ahead of print]Google Scholar
  82. 82.
    Watanabe N, Hayashi S, Kato H et al (2004) FDG-PET imaging in duodenal cancer. Ann Nucl Med 18(4):351–353CrossRefPubMedGoogle Scholar
  83. 83.
    Sperti C, Pasquali C, Fiore V et al (2006) Clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the management of patients with nonpancreatic periampullary neoplasms. Am J Surg 191(6):743–748CrossRefPubMedGoogle Scholar
  84. 84.
    Plaza P, Montravers F, Aide N et al (2004) [Assessment of a neuroendocrine tumour by 111In-pentetreotid scintigraphy and PET with 18FFDOPA and 18F-FDG]. Rev Esp Med Nucl 23(6):421–424CrossRefPubMedGoogle Scholar
  85. 85.
    Kowalski J, Henze M, Schuhmacher J et al (2003) Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 5(1):42–48CrossRefPubMedGoogle Scholar
  86. 86.
    Bastiaannet E, Groen H, Jager PL et al (2004) The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev 30(1):83–101CrossRefPubMedGoogle Scholar
  87. 87.
    Burkill GJ, Badran M, Al-Muderis O et al (2003) Malignant gastrointestinal stromal tumor: distribution, imaging features, and pattern of metastatic spread. Radiology 226(2):527–532CrossRefPubMedGoogle Scholar
  88. 88.
    Hersh MR, Choi J, Garrett C, Clark R (2005) Imaging gastrointestinal stromal tumors. Cancer Control 12(2):111–115PubMedGoogle Scholar
  89. 89.
    Goerres GW, Stupp R, Barghouth G et al (2005) The value of PET, CT and in-line PET/CT in patients with gastrointestinal stromal tumours: long-term outcome of treatment with imatinib mesylate. Eur J Nucl Med Mol Imaging 32(2):153–162CrossRefPubMedGoogle Scholar
  90. 90.
    Gayed I, Vu T, Iyer R, Johnson M et al (2004) The role of 18F-FDG-PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med 45(1):17–21PubMedGoogle Scholar
  91. 91.
    Kamiyama Y, Aihara R, Nakabayashi T et al (2005) 18F-fluorodeoxyglucose positron emission tomography: useful technique for predicting malignant potential of gastrointestinal stromal tumors. World J Surg 29(11):1429–1435CrossRefPubMedGoogle Scholar
  92. 92.
    Alberini JL, Al Nakib M, Wartski M et al (2007) [The role of PET scan in gastrointestinal stromal tumors] Gastroenterol Clin Biol 31(6–7):585–593PubMedCrossRefGoogle Scholar
  93. 93.
    Heinicke T, Wardelmann E, Sauerbruch T et al (2005) Very early detection of response to imatinib mesylate therapy of gastrointestinal stromal tumours using 18fluoro-deoxyglucose-positron emission tomography. Anticancer Res 25(6C):4591–4594PubMedGoogle Scholar
  94. 94.
    Antoch G, Kanja J, Bauer S et al (2004) Comparison of PET, CT, and dual-modality PET/CT imaging for monitoring of imatinib (STI571) therapy in patients with gastrointestinal stromal tumors. J Nucl Med 45(3):357–365PubMedGoogle Scholar
  95. 95.
    Kuehl H, Veit P, Rosenbaum SJ et al (2007) Can PET/CT replace separate diagnostic CT for cancer imaging? Optimizing CT protocols for imaging cancers of the chest and abdomen. J Nucl Med 48(Suppl 1):45S–57SPubMedGoogle Scholar
  96. 96.
    Böhm B, Voth M, Geoghegan J et al (2004) Impact of positron emission tomography on strategy in liver resection for primary and secondary liver tumors. J Cancer Res Clin Oncol 130(5):266–272CrossRefPubMedGoogle Scholar
  97. 97.
    Khan MA, Combs CS, Brunt EM et al (2000) Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol 32(5):792–797CrossRefPubMedGoogle Scholar
  98. 98.
    Shin JA, Park JW, An M et al (2006) [Diagnostic accuracy of 18F-FDG positron emission tomography for evaluation of hepatocellular carcinoma] Korean J Hepatol 12(4):546–52PubMedGoogle Scholar
  99. 99.
    Sun L, Guan YS, Pan WM et al (2007) Positron emission tomography/computer tomography in guidance of extrahepatic hepatocellular carcinoma metastasis management. World J Gastroenterol 13(40): 5413–5415PubMedGoogle Scholar
  100. 100.
    Talbot JN, Gutman F, Fartoux L et al (2006) PET/CT in patients with hepatocellular carcinoma using [(18)F]fluorocholine: preliminary comparison with [(18)F]FDG-PET/CT. Eur J Nucl Med Mol Imaging 33(11): 1285–1289CrossRefPubMedGoogle Scholar
  101. 102.
    Barker DW, Zagoria RJ, Morton KA et al (2005) Evaluation of liver metastases after radiofrequency ablation: utility of 18F-FDG-PET and PET/CT. AJR Am J Roentgenol 184(4):1096–1102PubMedGoogle Scholar
  102. 103.
    Blokhuis TJ, van der Schaaf MC, van den Tol MP et al (2004) Results of radio frequency ablation of primary and secondary liver tumors: long-term follow-up with computed tomography and positron emission tomography-18F-deoxyfluoroglucose scanning. Scand J Gastroenterol Suppl (241):93–97CrossRefPubMedGoogle Scholar
  103. 104.
    Veit P, Antoch G, Stergar H et al (2006) Detection of residual tumor after radiofrequency ablation of liver metastasis with dual-modality PET/CT: initial results. Eur Radiol 16(1):80–87CrossRefPubMedGoogle Scholar
  104. 105.
    Prior JO, Kosinski M, Delaloye AB, Denys A (2007) Initial report of PET/CT-guided radiofrequency ablation of liver metastases. J Vasc Interv Radiol 18(6):801–803CrossRefPubMedGoogle Scholar
  105. 106.
    Koh T, Taniguchi H, Yamaguchi A et al (2003) Differential diagnosis of gallbladder cancer using positron emission tomography with fluorine-18-labeled fluoro-deoxyglucose (FDG-PET). J Surg Oncol 84(2):74–81.CrossRefPubMedGoogle Scholar
  106. 107.
    Rodríguez-Fernández A, Gómez-Río M, Llamas-Elvira JM et al (2004) Positron-emission tomography with fluorine-18-fluoro-2-deoxy-D-glucose for gallbladder cancer diagnosis. Am J Surg 188(2):171–175CrossRefPubMedGoogle Scholar
  107. 108.
    Anderson CD, Rice MH, Pinson CW et al (2004) Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg 8(1):90–97CrossRefPubMedGoogle Scholar
  108. 109.
    Maldjian PD, Ghesani N, Ahmed S, Liu Y (2007) Adenomyomatosis of the gallbladder: another cause for a “hot” gallbladder on 18F-FDG-PET. AJR Am J Roentgenol 189(1):W36–38CrossRefPubMedGoogle Scholar
  109. 110.
    Nishivama Y, Yamamoto Y, Fukunaga K et al (2006) Dual-time-point 18F-FDG-PET for the evaluation of gallbladder carcinoma. J Nucl Med 47(4):633–638Google Scholar
  110. 111.
    Petrowsky H, Wildbrett P, Husarik DB et al (2006) Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J Hepatol 45(1):43–50CrossRefPubMedGoogle Scholar
  111. 112.
    Sun L, Wu H, Guan YS (2007) Positron emission tomography/computer tomography: challenge to conventional imaging modalities in evaluating primary and metastatic liver malignancies. World J Gastroenterol 13(20):2775–2783PubMedGoogle Scholar
  112. 113.
    Singh P, Patel T (2006) Advances in the diagnosis, evaluation and management of cholangiocarcinoma. Curr Opin Gastroenterol 22(3):294–299CrossRefPubMedGoogle Scholar
  113. 114.
    Moon CM, Bang S, Chung JB et al (2007) Usefulness of (18)F-fluorodeoxyglucose positron emission tomography in differential diagnosis and staging of cholangiocarcinomas. J Gastroenterol Hepatol 11Google Scholar
  114. 115.
    Reinhardt MJ, Strunk H, Gerhardt T et al (2005) Detection of Klatskin’s tumor in extrahepatic bile duct strictures using delayed 18F-FDG-PET/CT: preliminary results for 22 patient studies. J Nucl Med 46(7):1158–1163PubMedGoogle Scholar
  115. 116.
    Jadvar H, Henderson RW, Conti PS (2007) [F-18]fluorodeoxyglucose positron emission tomography and positron emission tomography: computed tomography in recurrent and metastatic cholangiocarcinoma. J Comput Assist Tomogr 31(2):223–228CrossRefPubMedGoogle Scholar
  116. 117.
    Borbath I, Van Beers BE, Lonneux M et al (2005) Preoperative assessment of pancreatic tumors using magnetic resonance imaging, endoscopic ultrasonography, positron emission tomography and laparoscopy. Pancreatology 5(6):553–561CrossRefPubMedGoogle Scholar
  117. 118.
    Bang S, Chung HW, Park SW (2006) The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J Clin Gastroenterol 40(10):923–929CrossRefPubMedGoogle Scholar
  118. 119.
    Mansour JC, Schwartz L, Pandit-Taskar N et al (2006) The utility of F-18 fluorodeoxyglucose whole body PET imaging for determining malignancy incystic lesions of the pancreas. J Gastrointest Surg 10(10):1354–1360CrossRefPubMedGoogle Scholar
  119. 120.
    Sperti C, Bissoli S, Pasquali C et al (2007) 18-Fluorodeoxyglucose Positron Emission Tomography Enhances Computed Tomography Diagnosis of Malignant Intraductal Papillary Mucinous Neoplasms of the Pancreas. Ann Surg 246(6):932–939CrossRefPubMedGoogle Scholar
  120. 121.
    Lemke AJ, Niehues SM, Hosten N et al (2004) Retrospective digital image fusion of multidetector CT and 18F-FDG-PET: clinical value in pancreatic lesions-a prospective study with 104 patients. J Nucl Med 45(8):1279–1286PubMedGoogle Scholar
  121. 122.
    Heinrich S, Goerres GW, Schäfer M et al (2005) Positron emission tomography/computed tomography influences on the management of resectable pancreatic cancer and its cost-effectiveness. Ann Surg 242(2):235–243CrossRefPubMedGoogle Scholar
  122. 123.
    Pakzad F, Groves AM, Ell PJ (2006) The role of positron emission tomography in the management of pancreatic cancer. Semin Nucl Med 36(3):248–256CrossRefPubMedGoogle Scholar
  123. 124.
    Chong S, Lee KS, Kim HY et al (2006) Integrated PET-CT for the characterization of adrenal gland lesions in cancer patients: diagnostic efficacy and in terpretation pitfalls. Radiographics 26(6):1811–1824CrossRefPubMedGoogle Scholar
  124. 125.
    Elaini AB, Shetty SK, Chapman VM et al (2007) Improved detection and characterization of adrenal disease with PET-CT. Radiographics 27(3):755–767CrossRefPubMedGoogle Scholar
  125. 126.
    Caoili EM, Korobkin M, Francis IR et al (2002) Adrenal masses: characterization with combined unenhanced and delayed enhanced CT. Radiology 222(3):629–633CrossRefPubMedGoogle Scholar
  126. 127.
    Blake MA, Slattery JM, Kalra MK et al (2006) Adrenal lesions: characterization with fused PET/CT image in patients with proved or suspected malignancy-initial experience. Radiology 238(3):970–977CrossRefPubMedGoogle Scholar
  127. 128.
    Bagheri B, Maurer AH, Cone L et al (2004) Characterization of the normal adrenal gland with 18F-FDG-PET/CT. J Nucl Med 45(8):1340–1343PubMedGoogle Scholar
  128. 129.
    Zhang LJ, Yang GF, Shen W, Qi J (2006) Imaging of primary adrenal lymphoma: case report and literature review. Acta Radiol 47(9):993–997CrossRefPubMedGoogle Scholar
  129. 130.
    Shulkin BL, Thompson NW, Shapiro B et al (1999) Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. Radiology 212(1):35–41PubMedGoogle Scholar
  130. 131.
    Becherer A, Vierhapper H, Pötzi C et al (2001) FDG-PET in adrenocortical carcinoma. Cancer Biother Radiopharm 16(4):289–295CrossRefPubMedGoogle Scholar
  131. 132.
    Mackie GC, Shulkin BL, Ribeiro RC et al (2006) Use of [18F]fluorodeoxyglucose positron emission tomography in evaluating locally recurrent and metastatic adrenocortical carcinoma. J Clin Endocrinol Metab 91(7):2665–2671CrossRefPubMedGoogle Scholar
  132. 133.
    Zettinig G, Mitterhauser M, Wadsak W et al (2004) Positron emission tomography imaging of adrenal masses: (18)F-fluorodeoxyglucose and the 11 betahydroxylase tracer (11)C-metomidate. Eur J Nucl Med Mol Imaging 31(9):1224–1230CrossRefPubMedGoogle Scholar
  133. 134.
    Gross MD, Avram A, Fig LM, Fanti S et al (2007) PET in the diagnostic evaluation of adrenal tumors. QJ Nucl Med Mol Imaging 51(3):272–283Google Scholar
  134. 135.
    Hain SF, Maisey MN (2003) Positron emission tomography for urological tumours. BJU Int 92(2):159–164CrossRefPubMedGoogle Scholar
  135. 136.
    Powles T, Murray I, Brock C et al (2007) Molecular positron emission tomography and PET/CT imaging in urological malignancies. Eur Urol 51(6):1511–1520CrossRefPubMedGoogle Scholar
  136. 137.
    Miyakita H, Tokunaga M, Onda H et al (2002) Significance of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of renal cell carcinoma and immunohistochemical glucose transporter 1 (GLUT-1) expression in the cancer. Int J Urol 9(1):15–18CrossRefPubMedGoogle Scholar
  137. 138.
    Bachor R, Kotzerke J, Gottfried HW et al (1996) [Positron emission tomography in diagnosis of renal cell carcinoma] Urologe A 35(2):146–150PubMedGoogle Scholar
  138. 139.
    Kang DE, White RL Jr, Zuger JH et al (2004) Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol 171(5):1806–1809CrossRefPubMedGoogle Scholar
  139. 140.
    Majhail NS, Urbain JL, Albani JM et al (2003) F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. J Clin Oncol 21(21):3995–4000CrossRefPubMedGoogle Scholar
  140. 141.
    Dilhuydy MS, Durieux A, Pariente A et al (2006) PET scans for decision-making in metastatic renal cell carcinoma: a single-institution evaluation. Oncology 70(5):339–344CrossRefPubMedGoogle Scholar
  141. 142.
    Divgi CR, Pandit-Taskar N, Jungbluth AA et al (2007) Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (1241-cG250) and PET in patients with renal masses: a phase 1 trial. Lancet Onco 8(4):304–310CrossRefGoogle Scholar
  142. 143.
    Kosuda S, Kison PV, Greenough R et al (1997) Preliminary assessment of fluorine-18 fluorodeoxyglucose positron emission tomography in patients with bladder cancer. Eur J Nucl Med 24(6):615–620PubMedGoogle Scholar
  143. 144.
    Drieskens O, Oyen R, Van Poppel H et al (2005) FDG-PET for preoperative staging of bladder cancer. Eur J Nucl Med Mol Imaging 32(12):1412–1417CrossRefPubMedGoogle Scholar
  144. 145.
    Bachor R, Kotzerke J, Reske SN, Hautmann R (1999) [Lymph node staging of bladder neck carcinoma with positron emission tomography] Urologe A 38(1):46–50CrossRefPubMedGoogle Scholar
  145. 146.
    Liu IJ, Lai YH, Espiritu JI et al (2006) Evaluation of fluorodeoxyglucose positron emission tomography imaging in metastatic transitional cell carcinoma with and without prior chemotherapy. Urol Int 77(1):69–75CrossRefPubMedGoogle Scholar
  146. 147.
    Anjos DA, Etchebehere EC, Ramos CD et al (2007) 18F-FDG-PET/CT delayed images after diuretic for restaging invasive bladder cancer. J Nucl Med 48(5):764–770CrossRefPubMedGoogle Scholar
  147. 148.
    Gofrit ON, Mishani E, Orevi M et al (2006) Contribution of 11C-choline positron emission tomography/computerized tomography to preoperative staging of advanced transitional cell carcinoma. J Urol 176(3):940–944CrossRefPubMedGoogle Scholar
  148. 149.
    van Ufford HM, Zoon PJ, van Waes PF et al (2005) Solitary splenic metastasis in a patient with a malignant melanoma diagnosed with F-18-FDG-PET scanning. Clin Nucl Med 30(8):582–583CrossRefGoogle Scholar
  149. 150.
    Metser U, Miller E, Kessler A et al (2005) Solid splenic masses: evaluation with 18F-FDG-PET/CT. J Nucl Med 46(1):52–59PubMedGoogle Scholar
  150. 151.
    Jemal A, Siegel R, Ward E et al (2007) Cancer statistics, 2007 CA Cancer J Clin 57(1):43–66CrossRefPubMedGoogle Scholar
  151. 152.
    Xiu Y, Yu JQ, Cheng E et al (2005) Sarcoidosis demonstrated by FDG-PET imaging with negative findings on gallium scintigraphy. Clin Nucl Med 30(3):193–195CrossRefPubMedGoogle Scholar
  152. 153.
    Bakheet SM, Powe J, Ezzat A, Rostom A (1998) F18-FDG uptake in tuberculosis. Clin Nucl Med 23(11):739–742CrossRefPubMedGoogle Scholar
  153. 154.
    Fey GL, Jolles PR, Buckley LM, Massey GV (2004) 2-Deoxy-2-[18F]fluoro-D-glucose positron emission tomography uptake in systemic lupus erythematosus-associated adenopathy. Mol Imaging Biol 6(1):7–11CrossRefPubMedGoogle Scholar
  154. 155.
    Shiozaki A, Otsuji E, Itoi H et al (2005) A case of Castleman’s disease arising from the lesser omentum. Hepatogastroenterology 52(62):516–518PubMedGoogle Scholar
  155. 156.
    Jerusalem G, Beguin Y, Najjar F et al (2001) Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) for the staging of low-grade non-Hodgkin’s lymphoma (NHL). Ann Oncol 12(6):825–830CrossRefPubMedGoogle Scholar
  156. 157.
    Hoffmann M, Wöhrer S, Becherer A et al (2006) 18F-Fluoro-deoxy-glucose positron emission tomography in lymphoma of mucosa-associated lymphoid tissue: histology makes the difference. Ann Oncol 17(12):1761–1765CrossRefPubMedGoogle Scholar
  157. 158.
    Jhanwar YS, Straus DJ (2006) The role of PET in lymphoma. J Nucl Med 47(8):1326–1334PubMedGoogle Scholar
  158. 159.
    Bar-Shalom R, Yefremov N, Haim N et al (2003) Camera-based FDG-PET and 67GA SPECT in evaluation of lymphoma: comparative study. Radiology 227(2):353–360CrossRefPubMedGoogle Scholar
  159. 160.
    Yamamoto F, Tsukamoto E, Nakada K et al (2004) 18F-FDG-PET is superior to 67Ga SPECT in the staging of non-Hodgkin’s lymphoma. Ann Nucl Med 18(6)519–526CrossRefPubMedGoogle Scholar
  160. 161.
    Friedberg JW, Fischman A, Neuberg D et al (2004) FDG-PET is superior to gallium scintigraphy in staging and more sensitive in the follow-up of patients with de novo Hodgkin lymphoma: a blinded comparison. Leuk Lymphoma 45(1):85–92CrossRefPubMedGoogle Scholar
  161. 162.
    Kostakoglu L, Leonard JP, Kuji I et al (2002) Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and Ga-67 scintigraphy in evaluation of lymphoma. Cancer 94(4):879–888CrossRefPubMedGoogle Scholar
  162. 163.
    Stumpe KD, Urbinelli M, Steinert HC et al (1998) Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomography. Eur J Nucl Med 25(7):721–872CrossRefPubMedGoogle Scholar
  163. 164.
    Jerusalem G, Beguin Y, Fassotte MF et al (2001) Whole-body positron emission tomography using 18F-fluorodeoxyglucose compared to standard procedures for staging patients with Hodgkin’s disease. Haematologica 86(3):266–273PubMedGoogle Scholar
  164. 165.
    Munker R, Stengel A, Stäbler A et al (1995) Diagnostic accuracy of ultrasound and computed tomography in the staging of Hodgkin’s disease. Verification by laparotomy in 100 cases. Cancer 76(8):1460–1466CrossRefPubMedGoogle Scholar
  165. 166.
    Thill R, Neuerburg J, Fabry U et al (1997) Comparison of findings with 18-FDG-PET and CT in pretherapeutic staging of malignant lymphoma. Nuklearmedizin 36(7):234–239PubMedGoogle Scholar
  166. 167.
    Moog F, Bangerter M, Kotzerke J et al (1998) 18-Ffluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol 16(2):603–609PubMedGoogle Scholar
  167. 168.
    Kazama T, Swanston N, Podoloff DA, Macapinlac HA (2005) Effect of colony-stimulating factor and conventional-or high-dose chemotherapy on FDG uptake in bone marrow. Eur J Nucl Med Mol Imaging 32(12):1406–1411CrossRefPubMedGoogle Scholar
  168. 169.
    Hong SP, Hahn JS, Lee JD et al (2003) 18F-fluorodeoxyglucose-positron emission tomography in the staging of malignant lymphoma compared with CT and 67Ga scan. Yonsei Med J 44(5):779–786PubMedGoogle Scholar
  169. 170.
    Schöder H, Meta J, Yap C et al (2001) Effect of whole-body (18)F-FDG-PET imaging on clinical staging and management of patients with malignant lymphoma. J Nucl Med 42(8):1139–1143PubMedGoogle Scholar
  170. 171.
    Munker R, Glass J, Griffeth LK et al (2004) Contribution of PET imaging to the initial staging and prognosis of patients with Hodgkin’s disease. Ann Oncol 15(11):1699–1704CrossRefPubMedGoogle Scholar
  171. 172.
    Allen-Auerbach M, Quon A, Weber WA et al (2004) Comparison between 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography and positron emission tomography/computed tomography hardware fusion for staging of patients with lymphoma. Mol Imaging Biol 6(6):411–416CrossRefPubMedGoogle Scholar
  172. 173.
    Surbone A, Longo DL, DeVita VT Jr et al (1988) Residual abdominal masses in aggressive non-Hodgkin’s lymphoma after combination chemotherapy: significance and management. J Clin Oncol 6(12): 1832–1837PubMedGoogle Scholar
  173. 174.
    Zinzani PL, Magagnoli M, Chierichetti F et al (1999) The role of positron emission tomography (PET) in the management of lymphoma patients. Ann Oncol 10(10):1181–1184CrossRefPubMedGoogle Scholar
  174. 175.
    Kostakoglu L, Agress H Jr, Goldsmith SJ (2003) Clinical role of FDG-PET in evaluation of cancer patients. Radiographics 23(2):315–340CrossRefPubMedGoogle Scholar
  175. 176.
    Cremerius U, Fabry U, Kröll U et al (1999) [Clinical value of FDG-PET for therapy monitoring of malignant lymphoma-results of a retrospective study in 72 patients] Nuklearmedizin 38(1):24–30PubMedGoogle Scholar
  176. 177.
    Mikhaeel NG, Timothy AR, O’Doherty MJ et al (2000) 18-FDG-PET as a prognostic indicator in the treatment of aggressive Non-Hodgkin’s Lymphoma-comparison with CT. Leuk Lymphoma 39(5–6):543–553PubMedGoogle Scholar
  177. 178.
    Zinzani PL, Fanti S, Fattista G et al (2004) Predictive role of positron emission tomography (PET) in the outcome of lymphoma patients. Br J Cancer 31;91(5):850–854Google Scholar
  178. 179.
    Freudenberg LS, Antoch G, Schütt P et al (2004) FDG-PET/CT in re-staging of patients with lymphoma. Eur J Nucl Med Mol Imaging 31(3):325–329CrossRefPubMedGoogle Scholar
  179. 180.
    Mikhaeel NG, Hutchings M, Fields PA et al (2005) FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann Oncol 16(9):1514–1523CrossRefPubMedGoogle Scholar
  180. 181.
    Hutchings M, Loft A, Hansen M et al (2006) FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood 107(1):52–59CrossRefPubMedGoogle Scholar
  181. 182.
    Kostakoglu L, Goldsmith SJ, Leonard JP et al (2006) FDG-PET after 1 cycle of therapy predicts outcome in diffuse large cell lymphoma and classic Hodgkin disease. Cancer 107(11):2678–2687CrossRefPubMedGoogle Scholar
  182. 183.
    Coleman M, Kostakoglu L (2006) Early 18F-labeled fluoro-2-deoxy-D-glucose positron emission tomography scanning in the lymphomas: changing the paradigms of treatments? Cancer 107(7):1425–1428CrossRefPubMedGoogle Scholar
  183. 184.
    Belhocine TZ, Scott AM, Even-Sapir E et al (2006) Role of nuclear medicine in the management of cutaneous malignant melanoma. J Nucl Med 47(6):957–967PubMedGoogle Scholar
  184. 185.
    Pu LL, Cruse CW (1999) Lymphatic mapping and sentinel lymph node biopsy for nonmelanoma skin cancers. Surg Oncol Clin N Am 8(3):527–539PubMedGoogle Scholar
  185. 186.
    Gershenwald JE, Thompson W, Mansfield PF et al (1999) Multi-institutional melanoma lymphatic mapping experience: the prognostic value of sentinel lymph node status in 612 stage I or II melanoma patients. J Clin Oncol 17(3):976–983PubMedGoogle Scholar
  186. 187.
    Zogakis TG, Essner R, Wang HJ et al (2005) Melanoma recurrence patterns after negative sentinel lymphadenectomy. Arch Surg 140(9):865–871CrossRefPubMedGoogle Scholar
  187. 188.
    Wagner JD, Schauwecker D, Davidson D et al (1999) Prospective study of fluorodeoxyglucosepositron emission tomography imaging of lymph node basins in melanoma patients undergoing sentinel node biopsy. J Clin Oncol 17(5):1508–1515PubMedGoogle Scholar
  188. 189.
    Kell MR, Ridge JA, Joseph N, Sigurdson ER (2007) PET CT imaging in patients undergoing sentinel node biopsy for melanoma. Eur J Surg Oncol 33(7):911–913PubMedGoogle Scholar
  189. 190.
    Wagner JD, Schauwecker DS, Davidson D et al (2001) FDG-PET sensitivity for melanoma lymph node metastases is dependent on tumor volume. J Surg Oncol 77(4):237–242CrossRefPubMedGoogle Scholar
  190. 191.
    Crippa F, Leutner M, Belli et al (2000) Which kinds of lymph node metastases can FDG-PET detect? A clinical study in melanoma. J Nucl Med 41(9):1491–1494PubMedGoogle Scholar
  191. 192.
    Holder WD Jr, White RL Jr, Zuger JH et al (1998) Effectiveness of positron emission tomography for the detection of melanoma metastases. Ann Surg 227(5):764–769; discussion 769–771CrossRefPubMedGoogle Scholar
  192. 193.
    Rinne D, Baum RP, Hör G, Kaufmann R (1998) Primary staging and follow-up of high risk melanoma patients with whole-body 18F-fluoro deoxyglucose positron emission tomogrpahy: results of a prospective study of 100 patients. Cancer 82(9):1664–1671CrossRefPubMedGoogle Scholar
  193. 194.
    Yancovitz M, Finelt N, Warycha MA et al (2007) Role of radiologic imaging at the time of initial diagnosis of stage T1b-T3b melanoma. Cancer 110(5):1107–1114CrossRefPubMedGoogle Scholar
  194. 195.
    Iagaru A, Quon A, Johnson D et al (2007): 2-Deoxy-2-[F-18]fluoro-D-glucose positron emission tomography/computed tomography in the management of melanoma. Mol Imaging Biol 9(1):50–57CrossRefPubMedGoogle Scholar
  195. 196.
    Schwimmer J, Essner R, Patel A et al (2000) A review of the literature for whole-body FDG-PET in the management of patients with melanoma. Q J Nucl Med 44(2):153–167PubMedGoogle Scholar
  196. 197.
    Reinhardt MJ, Joe AY, Jaeger U et al (2006) Diagnostic performance of whole body dual modality 18F-FDG-PET/CT imaging for N-and M-staging of malignant melanoma: experience with 250 consecutive patients. J Clin Oncol 24(7):1178–1187CrossRefPubMedGoogle Scholar
  197. 198.
    Mottaghy FM, Sunderkötter C, Schubert R et al (2007) Direct comparison of [18F]FDG-PET/CT with PET alone and with side-by-side PET and CT in patients with malignant melanoma. Eur J Nucl Med Mol Imaging 34(9):1355–1364CrossRefPubMedGoogle Scholar
  198. 199.
    Kamel EM, Thumshirn M, Truninger K et al (2004) Significance of incidental 18F-FDG accumulations in the gastrointestinal tract in PET/CT: correlation with endoscopic and histopathologic results. J Nucl Med 45(11):1804–1810PubMedGoogle Scholar
  199. 200.
    Rehani B, Strohmeyer P, Jacobs M, Mantil J (2006) Gallbladder metastasis from malignant melanoma: diagnosis with FDG-PET/CT. Clin Nucl Med 31(12):812–813CrossRefPubMedGoogle Scholar
  200. 201.
    Weng LJ, Schöder H (2004) Melanoma metastasis to the testis demonstrated with FDG-PET/Ct. Clin Nucl Med 29(12):811–812CrossRefPubMedGoogle Scholar
  201. 202.
    Pfannenberg C, Aschoff P, Schanz S et al (2007) Prospective comparison of 18F-fluorodeoxyglucose positron emission to mography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer 43(3):557–564CrossRefPubMedGoogle Scholar
  202. 203.
    Falk MS, Truitt AK, Coakley FV et al (2007) Interpretation, accuracy and management implications of FDG-PET/CT in cutaneous malignant melanoma. Nucl Med Commun 28(4):273–280CrossRefPubMedGoogle Scholar
  203. 204.
    Lerman H, Metser U, Grisaru D et al (2004) Normal and abnormal 18F FDG endometrial and ovarian uptake in pre and postmenopausal patients: assessment by PET/CT. J Nucl Med 45(2):266–271PubMedGoogle Scholar
  204. 205.
    Pandit-Taskar N (2005) Oncologic imaging in gynecologic malignancies. J Nucl Med 46(11):1842–1850PubMedGoogle Scholar
  205. 206.
    Subhas N, Patel PV, Pannu HK et al (2005) Imaging of pelvic malignancies with in-line FDG-PETCT: case examples and common pitfalls of FDGPET. Radiographics 25(4):1031–1043CrossRefPubMedGoogle Scholar
  206. 207.
    Lai CH, Yen TC, Chang TC (2007) Positron emission tomography imaging for gynecologic malignancy. Curr Opin Obstet Gynecol 19(1):37–41CrossRefPubMedGoogle Scholar
  207. 208.
    Yen TC, Lai CH (2006) Positron emission tomography in gynecologic cancer. Semin Nucl Med 36(1):93–104CrossRefPubMedGoogle Scholar
  208. 209.
    Wong TZ, Jones EL, Coleman RE (2004) Positron emission tomography with 2-deoxy-2-[(18)F]fluoro-D-glucose for evaluating local and distant disease in patients with cervical cancer. Mol Imaging Biol 6(1):55–62CrossRefPubMedGoogle Scholar
  209. 210.
    Loft A, Berthelsen AK, Roed H et al (2007) The diagnostic value of PET/CT scanning in patients with cervical cancer: a prospective study. Genecol Oncol 106(1):29–34CrossRefGoogle Scholar
  210. 211.
    Havrilesky LJ, Kulasingam SL, Matchar DB, Myers ER (2005) FDG-PET for management of cervical and ovarian cancer. Gynecol Oncol 97(1):183–191CrossRefPubMedGoogle Scholar
  211. 212.
    Ryu SY, Kim MH, Choi SC et al (2003) Detection of early recurrence with 18F-FDG-PET in patients with cervical cancer. J Nucl Med 44(3):347–352PubMedGoogle Scholar
  212. 213.
    Chung HH, Jo H, Kang WJ et al (2007) Clinical impact of integrated PET/CT on the management of suspected cervical cancer recurrence. Gynecol Oncol 104(3):529–534CrossRefPubMedGoogle Scholar
  213. 214.
    Choi HJ, Roh JW, Seo SS et al (2006) Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervical carcinoma: a prospective study. Cancer 106(4):914–922CrossRefPubMedGoogle Scholar
  214. 215.
    Esthappan J, Mutic S, Malyapa RS et al (2004) Treatment planning guidelines regarding the use of CT/PET-guided IMRT for cervical carcinoma with positive paraaortic lymphnodes. Int J Radiat Oncol Biol Phys 58(4):1289–1297PubMedGoogle Scholar
  215. 216.
    Singh AK, Grigsby PW, Dehdashti F et al (2003) FDG-PET lymph node staging and survival of patients with FIGO stage IIIb cervical carcinoma. Int J Radiat Oncol Biol Phys 56(2):489–493CrossRefPubMedGoogle Scholar
  216. 217.
    Grigsby PW, Siegel BA, Dehdashti F et al (2004) Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol 22(11):2167–2171CrossRefPubMedGoogle Scholar
  217. 218.
    Yoshida Y, Kurokawa T, Kawahara K et al (2004) Incremental benefits of FDG positron emission tomography over CT alone for the preoperative staging of ovarian cancer. AJR Am J Roentgenol 182(1):227–233PubMedGoogle Scholar
  218. 219.
    Yen RF, Sun SS, Shen YY et al (2001) Whole body positron emission tomography with 18F-fluoro-2-deoxyglucose for the detection of recurrent ovarian cancer. Anticancer Res 21(5):3691–3694PubMedGoogle Scholar
  219. 220.
    Bristow RE, del Carmen MG, Pannu HK et al (2003) Clinically occult recurrent ovarian cancer: patient selection for secondary cytoreductive surgery using combined PET/CT Gynecol Oncol 90(3):519–528CrossRefPubMedGoogle Scholar
  220. 221.
    Pannu HK, Cohade C, Bristow RE et al (2004) PET-CT detection of abdominal recurrence of ovarian cancer: radiologic-surgical correlation. Abdom Imaging 29(3):398–403CrossRefPubMedGoogle Scholar
  221. 222.
    Bristow RE, Giuntoli RL 2nd, Pannu HK et al (2005) Combined PET/CT for detecting recurrent ovarian cancer limited to retroperitoneal lymph nodes. Gynecol Oncol 99(2):294–300CrossRefPubMedGoogle Scholar
  222. 223.
    Smith GT, Hubner KF, McDonald T, Thie JA (1999). Cost Analysis of FDG-PET for Managing patients with Ovarian Cancer. Clin Positron Imaging 2(2):63–70CrossRefPubMedGoogle Scholar
  223. 224.
    Suzuki R, Miyagi E, Takahashi N et al (2007) Validity of positron emission tomography using fluoro-2-deoxyglucose for the preoperative evaluation of endometrial cancer. Int J Gynecol Cancer 17(4):890–896CrossRefPubMedGoogle Scholar
  224. 225.
    Belhocine T, De Barsy C, Hustinx R, Willems-Foidart J (2003) Usefulness of (18)F-FDG-PET in the post-therapy surveillance of endometrial carcinoma. Eur J Nucl Med Mol Imaging. 2002 Sep 29(9):1132–1139CrossRefGoogle Scholar
  225. 226.
    Saga T, Higashi T, Ishimori T, Mamede M, Nakamoto Y, Mukai T, Fujita T, Togashi K, Yura S, Higuchi T, Kita M, Fujii S, Konishi J. Clinical value of FDG-PET in the follow up of post-operative patients with endometrial cancer. Ann Nucl Med 17(3):197–203Google Scholar
  226. 227.
    Rebollo-Aguirre AC, Ramos-Font C, Gallego Peinado M et al (2006) [Positron emission tomography with fluordesoxyglucose-F18 in follow-up of endometrial cancer]. Rev Esp Med Nucl 25(6):359–366CrossRefPubMedGoogle Scholar
  227. 228.
    Chao A, Chang TC, Ng KK et al (2006) 18F-FDGPET in the management of endometrial cancer. Eur J Nucl Med Mol Imaging 33(1):36–44CrossRefPubMedGoogle Scholar
  228. 229.
    Sironi S, Picchio M, Landoni C et al (2007) Posttherapy surveillance of patients with uterine cancers: value of integrated FDG-PET/CT in the detection of recurrence. Eur J Nucl Med Mol Imaging 34(4):472–479CrossRefPubMedGoogle Scholar
  229. 230.
    Hofer C, Laubenbacher C, Block T et al (1999) Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36(1):31–35CrossRefPubMedGoogle Scholar
  230. 231.
    Liu IJ, Zafar MB, Lai YH et al (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organconfined prostate cancer. Urology 57(1):108–111CrossRefPubMedGoogle Scholar
  231. 232.
    Shreve PD, Grossman HB, Gross MD, Wahl RL (1996) Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology 199(3):751–756PubMedGoogle Scholar
  232. 233.
    Schöder H, Herrmann K, Gönen M et al (2005) 2-[18F]fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin Cancer Res 11(13):4761–4769CrossRefPubMedGoogle Scholar
  233. 234.
    Oyama N, Akino H, Kanamaru H et al (2002) 11C-acetate PET imaging of prostate cancer. J Nucl Med 43(2):181–186PubMedGoogle Scholar
  234. 235.
    Oyama N, Miller TR, Dehdashti F et al (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44(4):549–555PubMedGoogle Scholar
  235. 236.
    Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39(6):990–995PubMedGoogle Scholar
  236. 237.
    Reske SN, Blumstein NM, Neumaier B et al (2006) Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 47(8):1249–1254PubMedGoogle Scholar
  237. 238.
    Cimitan M, Bortolus R, Morassut S et al (2006) [(18)F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 33(12):1387–1398CrossRefPubMedGoogle Scholar
  238. 239.
    Jana S, Blaufox MD (2006) Nuclear medicine studies of the prostate, testes, and bladder. Semin Nucl Med 36(1):51–72CrossRefPubMedGoogle Scholar
  239. 240.
    Testa C, Schiavina R, Lodi R et al (2007) Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET/CT. Radiology 244(3):797–806CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Michael Moore
    • 1
  • Michael A. Blake
    • 1
  1. 1.Division of Abdominal Imaging Department of RadiologyMassachusetts General HospitalBostonUSA

Personalised recommendations