MDCT pp 93-110 | Cite as

Hepatobiliary Imaging by MDCT

  • Sebastian T. Schindera
  • Rendon C. Nelson


Hepatobiliary imaging by computed tomography (CT) has advanced impressively since the introduction of multidetector CT (MDCT) scanners in the late 1990s. Over the last few years, the number of detector rows has increased progressively from four, to eight, to 16, and then up to 64. Two important advantages of MDCT are the routine use of thinner, submillimeter sections, which yield higher spatial resolution, along the Z-axis and decrease in gantry rotation time, which result in a significantly reduced scan time. Sixteen-, 32- and 64-slice scanners allow the acquisition of data sets with nearly isotropic voxels for multiplanar imaging (e.g., coronal and sagittal plane), which has similar spatial resolution compared with axial planes. These off-axis reformations are particularly helpful for evaluating the hepatic vascular anatomy, the biliary system, and the segmental distribution of hepatic lesions. Since thin-section collination also reduces partial volume averaging, sensitivity and specificity for detecting and characterizing increases, especially for small focal hepatic lesions, whether benign or malignant.


Gallbladder Carcinoma Helical Compute Tomography Focal Nodular Hyperplasia Hilar Cholangiocarcinoma Portal Venous Phase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwartz LH, Gandras EJ, Colangelo SM et al (1999) Prevalence and importance of small hepatic lesions found at CT in patients with cancer. Radiology 210:71–74PubMedGoogle Scholar
  2. 2.
    Paulson EK, Harris JP, Jaffe TA et al (2005) Acute appendicitis: added diagnostic value of coronal reformations from isotropic voxels at multi-detector row CT. Radiology 235:879–885CrossRefPubMedGoogle Scholar
  3. 3.
    Caoili EM, Paulson EK (2000) CT of small-bowel obstruction: another perspective using multiplanar reformations. AJR Am J Roentgenol 174:993–998PubMedGoogle Scholar
  4. 4.
    Kawata S, Murakami T, Kim T et al (2002) Multidetector CT: diagnostic impact of slice thickness on detection of hypervascular hepatocellular carcinoma. AJR Am J Roentgenol 179:61–66PubMedGoogle Scholar
  5. 5.
    Abdelmoumene A, Chevallier P, Chalaron M et al (2005) Detection of liver metastases under 2 cm: comparison of different acquisition protocols in four row multidetector-CT (MDCT). Eur Radiol 15:1881–1887CrossRefPubMedGoogle Scholar
  6. 6.
    Weg N, Scheer MR, Gabor MP (1998) Liver lesions: improved detection with dual-detector-array CT and routine 2.5-mm thin collimation. Radiology 209:417–426PubMedGoogle Scholar
  7. 7.
    Haider MA, Amitai MM, Rappaport DC et al (2002) Multi-detector row helical CT in preoperative assessment of small (<or=1.5 cm) liver metastases: is thinner collimation better? Radiology 225:137–142CrossRefPubMedGoogle Scholar
  8. 8.
    Hong C, Bruening R, Schoepf UJ et al (2003) Multiplanar reformat display technique in abdominal multidetector row CT imaging. Clin Imaging 27:119–123CrossRefPubMedGoogle Scholar
  9. 9.
    Jaffe TA, Nelson RC, Johnson GA et al (2006), Optimization of multiplanar reformations from isotropic datasets acquired on a 16-element multidetector helical CT scanner. Radiology (in press)Google Scholar
  10. 10.
    Stabile Ianora AA, Memeo M, Scardapane A et al (2003) Oral contrast-enhanced three-dimensional helical-CT cholangiography: clinical applications. Eur Radiol 13:867–873PubMedGoogle Scholar
  11. 11.
    Wang ZJ, Yeh BM, Roberts JP et al (2005) Living donor candidates for right hepatic lobe transplantation: evaluation at CT cholangiography — initial experience. Radiology 235:899–904CrossRefPubMedGoogle Scholar
  12. 12.
    Caoili EM, Paulson EK, Heyneman LE et al (2000) Helical CT cholangiography with three-dimensional volume rendering using an oral biliary contrast agent: feasibility of a novel technique. AJR Am J Roentgenol 174:487–492PubMedGoogle Scholar
  13. 13.
    Zandrino F, Benzi L, Ferretti ML et al (2002), Multslice CT cholangiography without biliary contrast agent: technique and initial clinical results in the assessment of patients with biliary obstruction. Eur Radiol 12:1155–1161CrossRefPubMedGoogle Scholar
  14. 14.
    Kim HC, Park SJ, Park SI et al (2005) Multislice CT cholangiography using thin-slab minimum intensity projection and multiplanar reformation in the evaluation of patients with suspected biliary obstruction: preliminary experience. Clin Imaging 29:46–54PubMedGoogle Scholar
  15. 15.
    Rao ND, Gulati MS, Paul SB et al (2005) Three-dimensional helical computed tomography cholangiography with minimum intensity projection in gallbladder carcinoma patients with obstructive jaundice: comparison with magnetic resonance cholangiography and percutaneous transhepatic cholangiography. J Gastroenterol Hepatol 20:304–308CrossRefPubMedGoogle Scholar
  16. 16.
    Brink JA, Heiken JP, Forman HP et al (1995) Hepatic spiral CT: reduction of dose of intravenous contrast material. Radiology 197:83–88PubMedGoogle Scholar
  17. 17.
    Heiken JP, Brink JA, McClennan BL et al (1995) Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology 195:353–357PubMedGoogle Scholar
  18. 18.
    Yamashita Y, Komohara Y, Takahashi M et al (2000) Abdominal helical CT: evaluation of optimal doses of intravenous contrast material — a prospective randomized study. Radiology 216:718–723PubMedGoogle Scholar
  19. 19.
    Ho LM, Nelson RC, Thomas J et al (2004) Abdominal aortic aneurysms at multi-detector row helical CT: optimization with interactive determination of scanning delay and contrast medium dose. Radiology 232:854–859CrossRefPubMedGoogle Scholar
  20. 20.
    Itoh S, Ikeda M, Achiwa M et al (2005) Multiphase contrast-enhanced CT of the liver with a multislice CT scanner: effects of iodine concentration and delivery rate. Radiat Med 23:61–69PubMedGoogle Scholar
  21. 21.
    Awai K, Takada K, Onishi H, Hori S (2002) Aortic and hepatic enhancement and tumor-to-liver contrast: analysis of the effect of different concentrations of contrast material at multi-detector row helical CT. Radiology 224:757–763CrossRefPubMedGoogle Scholar
  22. 22.
    Schoellnast H, Tillich M, Deutschmann HA et al (2004) Improvement of parenchymal and vascular enhancement using saline flush and power injection for multiple-detector-row abdominal CT. Eur Radiol 14:659–664CrossRefPubMedGoogle Scholar
  23. 23.
    Schoellnast H, Tillich M, Deutschmann HA et al (2003) Abdominal multidetector row computed tomography: reduction of cost and contrast material dose using saline flush. J Comput Assist Tomogr 27:847–853CrossRefPubMedGoogle Scholar
  24. 24.
    Chopra S, Chintapalli KN, Ramakrishna K et al (2000) Helical CT cholangiography with oral cholecystographic contrast material. Radiology 214: 596–601PubMedGoogle Scholar
  25. 25.
    Ott DJ, Gelfand DW (1981) Complications of gastrointestinal radiologic procedures: II. Complications related to biliary tract studies. Gastrointest Radiol 6:47–56CrossRefPubMedGoogle Scholar
  26. 26.
    Foley WD, Mallisee TA, Hohenwalter MD et al (2000) Multiphase hepatic CT with a multirow detector CT scanner. AJR Am J Roentgenol 175:679–685PubMedGoogle Scholar
  27. 27.
    Laghi A, Iannaccone R, Rossi P et al (2003) Hepatocellular carcinoma: detection with triple-phase multi-detector row helical CT in patients with chronic hepatitis. Radiology 226:543–549CrossRefPubMedGoogle Scholar
  28. 28.
    Keogan MT, Seabourn JT, Paulson EK et al (1997) Contrast-enhanced CT of intrahepatic and hilar cholangiocarcinoma: delay time for optimal imaging. AJR Am J Roentgenol 169:1493–1499PubMedGoogle Scholar
  29. 29.
    Soyer P, Poccard M, Boudiaf M et al (2004) Detection of hypovascular hepatic metastases at triple-phase helical CT: sensitivity of phases and comparison with surgical and histopathologic findings. Radiology 231:413–420CrossRefPubMedGoogle Scholar
  30. 30.
    Miller FH, Butler RS, Hoff FL et al (1998) Using triphasic helical CT to detect focal hepatic lesions in patients with neoplasms. AJR Am J Roentgenol 171:643–649PubMedGoogle Scholar
  31. 31.
    Ch'en IY, Katz DS, Jeffrey RB Jr et al (1997) Do arterial phase helical CT images improve detection or characterization of colorectal liver metastases? J Comput Assist Tomogr 21:391–397CrossRefGoogle Scholar
  32. 32.
    Nino-Murcia M, Olcott EW, Jeffrey RB Jr et al (2000) Focal liver lesions: pattern-based classification scheme for enhancement at arterial phase CT. Radiology 215:746–751PubMedGoogle Scholar
  33. 33.
    Valls C, Andia E, Sanchez A et al (2001) Hepatic metastases from colorectal cancer: preoperative detection and assessment of resectability with helical CT. Radiology 218:55–60PubMedGoogle Scholar
  34. 34.
    Blake SP, Weisinger K, Atkins MB, Raptopoulos V (1999) Liver metastases from melanoma: detection with multiphasic contrast-enhanced CT. Radiology 213:92–96PubMedGoogle Scholar
  35. 35.
    Furuta A, Ito K, Fujita T et al (2004) Hepatic enhancement in multiphasic contrast-enhanced MD-CT: comparison of high-and low-iodine-concentration contrast medium in same patients with chronic liver disease. AJR Am j Roentgenol 183:157–162PubMedGoogle Scholar
  36. 36.
    Oliver JH 3rd, Baron RL, Federle MP et al (1997) Hypervascular liver metastases: do unenhanced and hepatic arterial phase CT images affect tumor detection. Radiology 205:709–715PubMedGoogle Scholar
  37. 37.
    Figueras J, Jaurrieta E, Valls C et al (2000) Resection or transplantation for hepatocellular carcinoma in cirrhotic patients: outcomes based on indicated treatment strategy. J Am Coll Surg 190:580–587CrossRefPubMedGoogle Scholar
  38. 38.
    Island ER, Pomposelli J, Pomfret EA (2005) Twenty-year experience with liver transplantation for hepatocellular carcinoma. Arch Surg 140:353–358CrossRefPubMedGoogle Scholar
  39. 39.
    Kutami R, Nakashima Y, Nakashima O (2000) Pathomorphologic study on the mechanism of fatty change in small hepatocellular carcinoma of humans. J Hepatol 33:282–289CrossRefPubMedGoogle Scholar
  40. 40.
    Peterson MS, Baron RL, Marsh JW Jr (2000) Pretransplantation surveillance for possible hepatocellular carcinoma in patients with cirrhosis: epidemiology and CT-based tumor detection rate in 430 cases with surgical pathologic correlation. Radiology 217:743–749PubMedGoogle Scholar
  41. 41.
    Valls C, Cos M, Figueras J et al (2004) Pretransplantation diagnosis and staging of hepatocellular carcinoma in patients with cirrhosis: value of dual-phase helical CT. AJR Am J Roentgenol 182:1011–1017PubMedGoogle Scholar
  42. 42.
    Kim SK, Lim JH, Lee WJ et al (2002) Detection of hepatocellular carcinoma: comparison of dynamic three-phase computed tomograph images and four-phase computed tomography images using multidetector row helical computed tomography. J Comput Assist Tomogr 26:691–698CrossRefPubMedGoogle Scholar
  43. 43.
    Iannaccone R, Laghi A, Catalano C et al (2005) Hepatocellular carcinoma: role of unenhanced and delayed phase multi-detector row helical CT in patients with cirrhosis. Radiology 234:460–467CrossRefPubMedGoogle Scholar
  44. 44.
    Sultana S, Morishita S, Awai K et al (2003) Evaluation of hypervascular hepatocellular carcinoma in cirrhotic liver by means of helical CT: comparison of different contrast medium concentrations within the same patient. Radiat Med 21:239–245PubMedGoogle Scholar
  45. 45.
    Marchiano A, Spreafico C, Lanocita R et al (2005) Does iodine concentration affect the diagnostic efficacy of biphasic spiral CT in patients with hepatocellular carcinoma. Abdom Imaging 30:274–280CrossRefPubMedGoogle Scholar
  46. 46.
    Kim T, Murakami T, Takahashi S et al (1998) Effects of injection rates of contrast material on arterial phase hepatic CT. AJR Am J Roentgenol 171: 429–432PubMedGoogle Scholar
  47. 47.
    Oliver JH, Baron RL (1999) High flow injection rates versus low flow injection rates: does increasing the injection rate result in greater detection of enhancement of hepatocellular carcinoma during hepatic arterial phase CT? 213:92–96Google Scholar
  48. 48.
    Mathieu D, Kobeiter H, Maison P et al (2000) Oral contraceptive use and focal nodular hyperplasia of the liver. Gastroenterology 118:560–564CrossRefPubMedGoogle Scholar
  49. 49.
    Hussain SM, Terkivatan T, Zondervan PE et al (2004) Focal nodular hyperplasia: findings at state-of-the-art MR imaging, US, CT, and pathologic analysis. Radiographics 24:3–19CrossRefPubMedGoogle Scholar
  50. 50.
    Brancatelli G, Federle MP, Grazioli L (2001) Focal nodular hyperplasia: CT findings with emphasis on multiphasic helical CT in 78 patients. Radiology 219:61–68PubMedGoogle Scholar
  51. 51.
    Vilgrain V, Uzan F, Brancatelli G (2003) Prevalence of hepatic hemangioma in patients with focal nodular hyperplasia: MR imaging analysis. Radiology 229:75–79CrossRefPubMedGoogle Scholar
  52. 52.
    Carlson SK, Johnson CD, Bender CE, Welch TJ (2000) CT of focal nodular hyperplasia of the liver. AJR Am J Roentgenol 174:705–712PubMedGoogle Scholar
  53. 53.
    Grazioli L, Federle MP, Brancatelli G et al (2001) Hepatic adenomas: imaging and pathologic findings. Radiographics 21:877–892PubMedGoogle Scholar
  54. 54.
    Ichikawa T, Federle MP, Grazioli L, Nalesnik M (2000) Hepatocellular adenoma: multiphasic CT and histopathologic findings in 25 patients. Radiology 214:861–868PubMedGoogle Scholar
  55. 55.
    Ruppert-Kohlmayr AJ, Uggowitzer MM, Kugler C et al (2001) Focal nodular hyperplasia and hepatocellular adenoma of the liver: differentiation with multiphasic helical CT. AJR Am J Roentgenol 176: 1493–1498PubMedGoogle Scholar
  56. 56.
    Kim TK, Choi BI, Han JK et al (1997) Peripheral cholangiocarcinoma of the liver: two-phase spiral CT findings. Radiology 204:539–543PubMedGoogle Scholar
  57. 57.
    Valls C, Guma A, Puig I et al (2000) Intrahepatic peripheral cholangiocarcinoma: CT evaluation. Abdom Imaging 25:490–496CrossRefPubMedGoogle Scholar
  58. 58.
    Han JK, Choi BI, Kim AY et al (2002) Cholangiocarcinoma: pictorial essay of CT and cholangiographic findings. Radiographics 22:173–187PubMedGoogle Scholar
  59. 59.
    Vazquez JL, Thorsen MK, Dodds WJ et al (1985) Atrophy of the left hepatic lobe caused by a cholangio-carcinoma. AJR Am J Roentgenol 144:547–548PubMedGoogle Scholar
  60. 60.
    Jarnagin WR, Fong Y, DeMatteo RP et al (2001) Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann Surg 234:507–517CrossRefPubMedGoogle Scholar
  61. 61.
    Zech CJ, Schoenberg SO, Reiser M, Helmberger T (2004) Cross-sectional imaging of biliary tumors: current clinical status and future developments. Eur Radiol 14:1174–1187CrossRefPubMedGoogle Scholar
  62. 62.
    Teefey SA, Baron RL, Schulte SJ et al (1992) Patterns of intrahepatic bile duct dilatation at CT: correlation with obstructive disease processes. Radiology 182:139–142PubMedGoogle Scholar
  63. 63.
    MacCarty RL, LaRusso NF, May GR et al (1985) Cholangiocarcinoma complicating primary sclerosing cholangitis: cholangiographic appearances. Radiology 156:43–46PubMedGoogle Scholar
  64. 64.
    Campbell WL, Peterson MS, Federle MP et al (2001) Using CT and cholangiography to diagnose biliary tract carcinoma complicating primary sclerosing cholangitis AJR Am J Roentgenol 177:1095–1100PubMedGoogle Scholar
  65. 65.
    Grand D, Horton KM, Fishman EK (2004) CT of the gallbladder: spectrum of disease. AJR Am J Roentgenol 183:163–170PubMedGoogle Scholar
  66. 66.
    Yamashita K, Jin MJ, Hirose Y et al (1995) CT finding of transient focal increased attenuation of the liver adjacent to the gallbladder in acute cholecystitis. AJR Am J Roentgenol 164:343–346PubMedGoogle Scholar
  67. 67.
    Grayson DE, Abbott RM, Levy AD, Sherman PM (2002) Emphysematous infections of the abdomen and pelvis: a pictorial review. Radiographics 22:543–561PubMedGoogle Scholar
  68. 68.
    Yun EJ, Cho SG, Park S et al (2004) Gallbladder carcinoma and chronic cholecystitis: differentiation with two-phase spiral CT. Abdom Imaging 29:102–108CrossRefPubMedGoogle Scholar
  69. 69.
    Stephen AE, Berger DL (2001) Carcinoma in the porcelain gallbladder: a relationship revisited. Surgery 129:699–703CrossRefPubMedGoogle Scholar
  70. 70.
    Towfigh S, McFadden DW, Cortina GR et al (2001) Porcelain gallbladder is not associated with gallbladder carcinoma. Am Surg 67:7–10PubMedGoogle Scholar
  71. 71.
    Itai Y, Araki T, Yoshikawa K et al (1980) Computed tomography of gallbladder carcinoma. Radiology 137:713–718PubMedGoogle Scholar
  72. 72.
    Koga A, Watanabe K, Fukuyama T et al (1988) Diagnosis and operative indications for polypoid lesions of the gallbladder. Arch Surg 123:26–29PubMedGoogle Scholar
  73. 73.
    Kim BS, Ha HK, Lee IJ et al (2002) Accuracy of CT in local staging of gallbladder carcinoma. Acta Radiol 43:71–76CrossRefPubMedGoogle Scholar
  74. 74.
    Kumaran V, Gulati S, Paul B et al (2002) The role of dual-phase helical CT in assessing resectability of carcinoma of the gallbladder. Eur Radiol 12: 1993–1999PubMedGoogle Scholar
  75. 75.
    Yoshimitsu K, Honda H, Shinozaki K et al (2002) Helical CT of the local spread of carcinoma of the gallbladder: evaluation according to the TNM system in patients who underwent surgical resection. AJR Am J Roentgenol 179:423–428PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Sebastian T. Schindera
    • 1
  • Rendon C. Nelson
    • 1
  1. 1.Division of Abdominal ImagingDuke University Medical CenterDurhamUSA

Personalised recommendations