Advertisement

PET Features

  • Bruno Bagni
  • Antonella Franceschetto
  • Alessandra Casolo
  • Marina Cucca

Abstract

Positron emission tomography (PET) [1] is a tomographic technique of nuclear medicine in which a computer-generated image of local radioactive tracer distribution in tissues is produced through the detection of annihilation photons emitted when radio-nuclides introduced into the body decay and release positrons. PET with 18F-fluorodeoxyglucose (18F-FDG) uses a radio-labeled analog of glucose to image relative glucose metabolic rates in various tissues. Because glucose metabolism is increased in many malignancies, 18F-FDG PET is a sensitive method for detecting, staging, and monitoring the effects of therapy of many tumors. Computed tomography (CT) is a tomographic imaging technique that uses an X-ray beam to produce anatomic images. This anatomic information is used to detect and help to determine the location and extent of malignancies. Combined PET/CT devices provide both the metabolic information from PET and the anatomic information from CT in a single examination. As shown in some clinical experiences, the information obtained by PET-CT appears to be more accurate in evaluating patients with known or suspected malignancies than does the information obtained from either PET or CT separately and interpreted side by side.

Keywords

Positron Emission Tomography Standardize Uptake Value Thymic Carcinoma Transversal View Thymic Hyperplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delbeke D, Coleman RE, Guiberteau MJ et al (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT. J Nucl Med 47(5):885–895PubMedGoogle Scholar
  2. 2.
    Ayabe Z, Sakakibara N, Matsuura K (1984) 201T1-chloride imaging of malignant thymus neoplasm. Rinsho Hoshasen 29(2):341–342PubMedGoogle Scholar
  3. 3.
    Srirajaskanthan R, Toubanakis C, Dusmet M, Caplin ME (2008) A review of thymic tumours. Lung Cancer 60(1):4–13PubMedCrossRefGoogle Scholar
  4. 4.
    Kazuya K, Kiyoshi Y, Masaru T et al (2004) Who histologic classification is a prognostic indicator in thymoma. Ann Thorac Surg 77:1183–1188CrossRefGoogle Scholar
  5. 5.
    Sasaki M, Kuwabara Y, Ichiya Y et al (1999) Differential diagnosis of thymic tumors using a combination of 11C-Methionine PET and FDG PET. J Nucl Med 40(10):1595–1601PubMedGoogle Scholar
  6. 6.
    Ferdinand B, Gupta P, Kramer E (2004) Spectrum of Thymic Uptake at 18F-FDG PET. RadioGraphics 24:1611–1616PubMedCrossRefGoogle Scholar
  7. 7.
    Alibazoglu H, Alibazoglu B, Hollinger EF et al (2001) Normal thymic uptake of 2-deoxy-2[F-18]fluoro-D-glucose. Clin Nucl Med 24(8):597–600CrossRefGoogle Scholar
  8. 8.
    Bar-Sever Z, Keidar Z, Ben-Barak A et al (2007) The incremental value of 18F-FDG PET/CT in paediatric malignancies. Eur J Nucl Med Mol Imaging 34(5):630–637PubMedCrossRefGoogle Scholar
  9. 9.
    Sung YM, Lee KS, Kim BT et al (2006) 18F-FDG PET/CT of thymic epithelial tumors: Usefulness for distinguishing and staging tumor subgroups. J Nucl Med 47(10):1628PubMedGoogle Scholar
  10. 10.
    Del Rocío Estrada-Sánchez G, Altamirano-Ley J, Ochoa-Carrillo FJ (2007) Normal variants and frequent pitfalls with (18)FDG PET/CT. Cir 75(6):491–497Google Scholar
  11. 11.
    Ferdinand B, Gupta P, Kramer EL (2004) Spectrum of thymic uptake at 18F-FDG PET. RadioGraphics 24(6):1611–1616 (review)PubMedCrossRefGoogle Scholar
  12. 12.
    Patel PM, Alibazoglu H, Ali A et al (1996) Normal thymic uptake of FDG on PET imaging. Clin Nucl Med (10):772–775CrossRefGoogle Scholar
  13. 13.
    Liu RS, Yeh SH, Huang MH et al (1995) Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of thymoma: A preliminary report. Eur J Nucl Med 22(12):1402–1407PubMedCrossRefGoogle Scholar
  14. 14.
    El-Bawab H, Al-Sugair AA, Rafay M et al (2007) Role of flourine-18 fluorodeoxyglucose positron emission tomography in thymic pathology. Eur J Cardiothorac Surg 31(4):731–736PubMedCrossRefGoogle Scholar
  15. 15.
    Brink I, Reinhardt MJ, Hoegerle S et al (2001) PET: Increased metabolic activity in the thymus gland studied with 18F-FDG. Age dependency and frequency after chemotherapy. J Nucl Med 42(4):591–595PubMedGoogle Scholar
  16. 16.
    Bagga S, Bloch EM (2006) Imaging of an invasive malignant thymoma on PET Scan: CT and histopathologic correlation. Clin Nucl Med 31(10):614–616PubMedCrossRefGoogle Scholar
  17. 17.
    Bogot NR, Quint LE (2005) Imaging of thymic disorders. Cancer Imaging 5(1):139–149PubMedCrossRefGoogle Scholar
  18. 18.
    Smith CS, Schöder H, Yeung HW (2007) Thymic extension in the superior mediastinum in patients with thymic hyperplasia: Potential cause of false-positive findings on 18F-FDG PET/CT. AJR Am J Roentgenol 188(6):1716–1721PubMedCrossRefGoogle Scholar
  19. 19.
    Ferdinand B, Gupta P, Kramer EL (2004) Spectrum of thymic uptake at 18F-FDG PET1. RadioGraphics 24:1611–1616PubMedCrossRefGoogle Scholar
  20. 20.
    Bar-Sever Z, Keidar Z, Ben-Barak A et al (2007) The incremental value of 18F-FDG PET/CT in paediatric malignancies. Eur J Nucl Med Mol Imaging 34(5):630–637PubMedCrossRefGoogle Scholar
  21. 21.
    Sung YM, Lee KS, Kim BT et al (2006) 18F-FDG PET/CT of thymic epithelial tumors: Usefulness for distinguishing and staging tumor subgroups. J Nucl Med 47(10):1628–1634PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Bruno Bagni
    • 1
  • Antonella Franceschetto
    • 1
  • Alessandra Casolo
    • 1
  • Marina Cucca
    • 1
  1. 1.Department of Nuclear MedicineUniversity of Modena and Reggio Emilia General HospitalModenaItaly

Personalised recommendations