Advertisement

Computer Simulations for the Optimization of Technological Processes

  • Alessandro Baldi Antognini
  • Alessandra Giovagnoli
  • Daniele Romano
  • Maroussa Zagoraiou

Abstract

This chapter is about experiments for quality improvement and the innovation of products and processes performed by computer simulation. It describes familiar methods for creating surrogate models of simulators (emulators), with particular reference to Kriging interpolation, and some new ways of fitting the models to the simulated data.

Keywords

Computer Experiment Robust Design Ordinary Kriging Noise Factor Coordinate Measuring Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aickin. M.: Randomization, balance, and the validity and efficiency of design-adaptive allocation methods. J. Stat. Plan. Infer. 94, 97–119 (2001)MATHCrossRefMathSciNetGoogle Scholar
  2. Alexandrov, N., Dennis, J.E. Jr., Lewis, R.M., Torczon, V.: A trust region framework for managing the use of approximation models in optimization. Struct. Optimiz. 15(1), 16–23 (1998)CrossRefGoogle Scholar
  3. Baldi Antognini, A., Giovagnoli, A.: On the large sample optimality of sequential designs for comparing two or more treatments. Seq. Anal. 24, 205–217 (2005)MATHMathSciNetGoogle Scholar
  4. Baldi Antognini, A., Giovagnoli, A.: On the asymptotic inference for response-adaptive experiments. Metron 64, 29–45 (2006)MathSciNetGoogle Scholar
  5. Baldi Antognini, A., Giovagnoli, A., Romano, D.: Implementing asymptotically optimal experiments for treatment comparison. Presented at the 5th ENBIS Conf., Newcastle, UK, Sept. (2005); available on CD-ROMGoogle Scholar
  6. Baldi. A., Pedone, P.: Caratterizzazione numerico sperimentale dei rotatori geometrici nell’interferometria in luce bianca. Proc. of XXXIV AIAS Conference, Milan, Italy, pp. 203–204, 14-17 Sept. (2005); extended version on CD-ROMGoogle Scholar
  7. Baldi, A., Giovagnoli, A., Romano, D.: Robust design of a high-precision optical profilometer by computer experiments. Presented at the 2nd ENBIS Conf.Rimini23-24 Sept. (2002)Google Scholar
  8. Baldi. A., Ginesu. F.. Pedone, P., Romano. D.: Performance comparison of white light-optical profilometers, Proc. 2006 SEM (Society for Experimental Mechanics) Annual Conf., St. Louis,MO, USA, paper no. 378 on CD-ROM, ISBN 0-912053-93-X, 4-7 June (2006)Google Scholar
  9. Bashyam, S., Fu, M.C.: Optimization of (s. S) inventory systems with random lead times and a service level constraint, Manag. Sci. 44(12), 243–256 (1998)CrossRefGoogle Scholar
  10. Bates, R.A., Buck, R.J., Riccomagno, E., Wynn, H.P.: Experimental design and observation for large systems. J. Roy. Stat. Soc. B 58, 77–94 (1996)MATHMathSciNetGoogle Scholar
  11. Bates, R.A., Kenett, R.S., Steinberg, D.M., Wynn, H.P.: Achieving robust design from computer simulation. Qual. Technol. Quant. Manag. 3(2), 161–177 (2006)MathSciNetGoogle Scholar
  12. Bursztyn, D., Steinberg, D.M.: Comparisons of designs for computer experiments. J. Stat. Plan. Infer. 136, 1103–1119 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. Box, G.E.P., Wilson, K.B.: On the experimental attainment of optimum conditions. J. Roy. Stat. Soc. B 13, 1–45 (1951)MathSciNetGoogle Scholar
  14. Chaudhuri, P., Mykland, P.A.: Nonlinear experiments: optimal design and inference based on likelihood. J. Am. Stat. Assoc. 88, 538–546 (1993)MATHCrossRefMathSciNetGoogle Scholar
  15. Cressie, N.A.C.: Statistics for Spatial Data. Wiley, New York (1993)Google Scholar
  16. Cocco, D., Romano, D.. Serra, F.: Caratterizzazione di un gassificatore a letto fisso mediante la metodologia della pianificazione degli esperimenti. Proc. of 63° Congresso Associazione Termotecnica Italiana, Palermo, Italy, 23-26 Sept. (2008)Google Scholar
  17. Fang. K.T., Li. R., Sudjianto, A.: Design and Modelling for Computer Experiments. Chapman and Hall/CRC, London (2006)Google Scholar
  18. Farhang-Mehr, A., Azarm, S.: An information-theoretic performance metric for quality assessment of multi-objective optimization solution sets. J. Mech. D-T ASME 125, 655–663 (2003)CrossRefGoogle Scholar
  19. Ford, I., Titterington, D.M., Wu, C.F.T.: Inference and sequential design. Biometrika 72, 545–551 (1985)CrossRefMathSciNetGoogle Scholar
  20. Ghosh, B.K., Sen, P.K.: Handbook of Sequential Analysis. Marcel Dekker, New York (1991)MATHGoogle Scholar
  21. Giovagnoli, A.: Sul ruolo delia probabilità e della verosimiglianza nella prograrnmazione degli esperimenti. Statistica 59, 559–580 (1999)MATHGoogle Scholar
  22. Giovagnoli, A., Romano, D.: Robust design via experiments on a stochastic simulator: a modified dual response surface approach. Qual. Reliab. Eng. Inter. 24, 401–416 (2008)CrossRefGoogle Scholar
  23. Gupta, A., Ding, Y., Xu, L.: Optimal parameter selection for electronic packaging using sequential computer simulations. J. Manuf. Sci. Eng. T ASME 128, 705–715 (2006)CrossRefGoogle Scholar
  24. Hu, F., Rosenberger, W.F.: Optimality, variability, power: evaluating response-adaptive randomization procedures for treatment comparisons. J. Am. Stat. Assoc. 98, 671–678 (2003)MATHCrossRefMathSciNetGoogle Scholar
  25. Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maxmin distance design. J. Stat. Plan. Infer. 26, 131–148 (1990)CrossRefMathSciNetGoogle Scholar
  26. Kleijnen, J.P.C., Sargent, R.G.: A methodology for fitting and validating metamodels in simulation. Eur. J. Oper. Res. 120, 14–29 (2000)MATHCrossRefGoogle Scholar
  27. Kleijnen, J.P.C., Van Beers, W.C.M.: Application-driven sequential designs for simulation experiments: Kriging metamodeling. J. Oper. Res. Soc. 55, 876–883 (2004)MATHCrossRefGoogle Scholar
  28. Koehler, J.R., Owen, A.B.: Computer experiments. In: Ghosh, S., Rao, C.R. (eds) Handbook of Statistics, vol. 13. Elsevier, Amsterdam, pp 261–308 (1996)Google Scholar
  29. Lehman, J.S., Santner. T.J., Notz, W.I.: Designing computer experiments to determine robust control variables. Stat. Sinica 14, 571–590 (2004)MATHMathSciNetGoogle Scholar
  30. Li, W., Wu., C.F.J.: An integrated method of parameter design and tolerance design. Qual. Eng. 11, 417–425(1999)CrossRefGoogle Scholar
  31. Lin, Y., Mistree, F., Allen, J.K.: A sequential exploratory experimental design method: development of appropriate empirical models in design. In: Chen, W. (ed.), ASME 30th Conf. of Design Automation, Salt Lake City, UT, USA, ASME Paper no. DETC2004/DAC-57527, 28 Sept.-2 Oct. (2004)Google Scholar
  32. Lindley, D.V.: On a measure of information provided by an experiment. Ann. Math. Stat. 27, 986–1005 (1956)MATHCrossRefMathSciNetGoogle Scholar
  33. Matheron, G.: Traité de géostatistique appliquée. Vol. 1, Mémoires du Bureau de Recherches Geologiques et Miniéres. Editions Bureau de Recherches Geologiques et Minieres (vol. 24), Paris (1962)Google Scholar
  34. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)MATHCrossRefMathSciNetGoogle Scholar
  35. Melfi, V., Page, C.: Estimation after adaptive allocation. J. Stat. Plan. Infer. 87, 353–363 (2000)MATHCrossRefMathSciNetGoogle Scholar
  36. Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley, New York (2005)MATHGoogle Scholar
  37. Myers, R.H., Montgomery D.C.: Response Surface Methodology, 2nd edn. Wiley, New York (2002)Google Scholar
  38. Myers, R.H., Khuri, A.I., Vining, G.G.: Response surface alternatives to the Taguchi robust parameter design approach. Am. Stat. 46(2), 131–139 (1992)CrossRefGoogle Scholar
  39. Pedone, P., Vicario, G., Romano, D.: Kriging-based sequential inspection plans for coordinate measuring machines. ENBIS-DEINDE Conf., Turin, Italy, 11-13 April (2007); available on CD-ROMGoogle Scholar
  40. Ripley, B.: Spatial Statistics. Wiley, New York (1981)MATHCrossRefGoogle Scholar
  41. Romano, D.: Sequential experiments for technological applications: some examples. cProc. XLIII Scientific Meeting of the Italian Statistical Society-Invited Session: Adaptive Experiments, Turin, Italy, pp 391–402, 14-16 June (2006)Google Scholar
  42. Romano, D., Kinnaert, M.: Robust design of fault detection and isolation systems. Qual. Reliab. Eng. Int. 22(5), 527–538 (2006)CrossRefGoogle Scholar
  43. Romano, D., Varetto, M., Vicario, G.: A general framework for multiresponse robust design based on combined array. J. Qual. Technol. 36(1), 27–37 (2004)Google Scholar
  44. Romano, D., Vicario, G.: Inspecting geometric tolerances: uncertainty in position tolerances control on coordinate measuring machines. Stat. Meth. Appl. 11(1), 83–94 (2002a)MATHCrossRefGoogle Scholar
  45. Romano, D., Vicario, G.: Reliable estimation in computer experiments on finite element codes. Qual. Eng. 14(2), 195–204 (2002b)CrossRefGoogle Scholar
  46. Rosenberger, W.F., Floumoy, N., Durham S.D.: Asymptotic normality of maximum likelihood estimators from rnultiparameter response-driven designs. J. Stat. Plan. Infer. 60, 69–76 (1997)MATHCrossRefGoogle Scholar
  47. Rosenberger, W.F., Lachin, J.M.: Randomization in Clinical Trials. Wiley, New York (2002)MATHCrossRefGoogle Scholar
  48. Sacks. J., Welch, W., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4, 409–435 (1989)MATHCrossRefMathSciNetGoogle Scholar
  49. Santner, J.T., Williams, B.J., Notz, W.J.: The Design and Analysis of Computer Experiments. Springer, New York (2003)MATHGoogle Scholar
  50. Sasena, M.J.: Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximations. Ph.D. thesis, University of Michigan. MI (2002)Google Scholar
  51. Shewry, M.C., Wynn, H.P.: Maximum entropy sampling. J. Appl. Stat. 14, 165–170 (1987)CrossRefGoogle Scholar
  52. Silvey, S.D.: Optimal Designs. Chapman & Hall, London (1980)Google Scholar
  53. Taguchi. G., Wu, Y: Introduction to Off-line Quality Control. Central Japan Quality Control Association, Nagoya (available from American Supplier Institute, Romulus, MI) (1980)Google Scholar
  54. Thompson, S.K., Seber, G.A.F.: Adaptive Sampling. Wiley, New York (1996)MATHGoogle Scholar
  55. Van Beers, W.C.M., Kleijnen, J.P.C.: Kriging for interpolation in random simulation. J. Oper. Res. Soc. 54, 255–262 (2003)CrossRefGoogle Scholar
  56. Van Beers, W.C.M. Kleijnen, J.P.C.: Customized sequential designs for random simulation experiments: Kriging metamodeling and bootstrapping (Discussion Paper no. 55). Tilburg University, Holland (2005)Google Scholar
  57. Vining, G.G., Myers, R.H.: Experimental design for estimating both mean and variance functions. J. Qual. Tech. 28, 135–147 (1990)Google Scholar
  58. Wang, G.G., Dong, Z., Aitchison, P.: Adaptive response surface method-a global optimization scheme for computation-intensive design problems. J. Eng. Opt. 33(6), 707–734 (2001)CrossRefGoogle Scholar
  59. Welch, W.J., Buck, R.J., Sacks, J., Wynn, H.P., Mitchell, T.J., Morris, M.D.: Screening, predicting, and computer experiments. Technometrics 34, 15–25 (1992)CrossRefGoogle Scholar
  60. Welch, W.J., Yu, T.-K., Kang, S.M., Sacks, J.: Computer experiments for quality control by parameter design. J. Qual. Tech. 22, 15–22 (1990)Google Scholar
  61. Williams, B.J., Santner, T.J., Notz, W.I.: Sequential design of computer experiments to minimize integrated response functions. Stat. Sinica 10, 1133–1152 (2000)MATHMathSciNetGoogle Scholar
  62. Wujek, B.A., Renaud, J.E.: New adaptive move-limit management strategy for approximate optimization, Parts 1 and 2. AIAA J. 36(10), 1911–1934 (1998)CrossRefGoogle Scholar
  63. Zagoraiou, M., Baldi Antognini, A.: On the optimal designs for Gaussian ordinary Kriging with exponential correlation structure. Appl. Stoch. Models Bus. Ind. (in press) (2008)Google Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Alessandro Baldi Antognini
    • 1
  • Alessandra Giovagnoli
    • 1
  • Daniele Romano
    • 2
  • Maroussa Zagoraiou
    • 1
  1. 1.Department of Statistical SciencesUniversity of BolognaItaly
  2. 2.Department of Mechanical EngineeringUniversity of CagliariCagliariItaly

Personalised recommendations