Mutagenic Studies on the Origins of the Root Effect

  • Satoru Unzai
  • Kiyohiro Imai
  • Sam-Yong Park
  • Kiyoshi Nagai
  • Tom Brittain
  • Jeremy R. H. Tame
Part of the Protein Reviews book series (PRON, volume 9)


Unlike the majority of mammals, which produce only a single major haemoglobin (Hb) component (>90% of the Hb content of the red blood cell), many fish species have multiple Hb components which show considerable differences in sequence and functional properties. Functional heterogeneity of several Hb types within the red cell can extend the range of conditions under which oxygen can be transported effectively around the blood stream, and permits a division of labour between the various components which can each fulfil a specific role. A number of fish Hbs are known to show very low oxygen affinity as pH drops, but the structural basis for this effect is only recently becoming clear. Site-directed mutagenesis and functional studies are described, comparing the Hbs of Trematomus bernachii and Trematomus newnesi.


Oxygen Affinity Antarctic Fish Root Effect Oxygen Equilibrium Curve Oxygen Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berenbrink, M., Koldkjaer, P., Kepp, O., and Cossins, A.R. 2005. Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307:1752–1757.PubMedCrossRefGoogle Scholar
  2. Biot, M. 1807. Sur la nature de l’air continue dans la vessie natatoire des poisons. Mem. Phys. Chim. Soc. D’Arcuiel 1:252.Google Scholar
  3. Brittain, T. 1987. The Root Effect. Comp. Biochem. Physiol. 86:473–481.Google Scholar
  4. Camardella, L., Caruso, C., D’Avino, R., di Prisco, G., Rutigliano, B., Tamburrini, M., Fermi, G., and Perutz, M. F. 1992. Haemoglobin of the antarctic fish Pagothenia bernac-chii. Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative. J. Mol. Biol. 224:449–460.PubMedCrossRefGoogle Scholar
  5. Haldane, J. S. 1922. Respiration. New Haven: Yale University Press.Google Scholar
  6. Hayashi, A., Suzuki, T. and Shim, M. 1973. An enzymic reduction system for metmyoglo-bin and methemoglobin, and its application to functional studies of oxygen carries. Biochim. Biophys. Acta 310:309–316.PubMedGoogle Scholar
  7. Henry, E. R., Bettati, S., Hofrichter, J., and Eaton, W. A. 2002. A tertiary two-state allosteric model for hemoglobin. Biophys. Chem. 98:149–164.PubMedCrossRefGoogle Scholar
  8. Herzfeld, J., and Stanley, H. E. 1974. A general approach to cooperativity and its application to the oxygen equilibrium of hemoglobin and its effectors. J. Mol. Biol. 82:231–265.PubMedCrossRefGoogle Scholar
  9. Imai, K. 1981. Measurement of accurate oxygen equilibrium curves by an automatic oxy-genation epporatus. Methods Enzymol. 76:438–449PubMedCrossRefGoogle Scholar
  10. Imai, K. 1994. Adair fitting of oxygen equilibrium curves of hemoglobin. Methods Enzymol. 232:559–576.PubMedCrossRefGoogle Scholar
  11. Ito, N., Komiyama, N. H., and Fermi, G. 1995. Structure of deoxyhaemoglobin of the antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the root effect by comparison of the liganded and unliganded haemoglobin structures. J. Mol. Biol. 250:648–658.PubMedCrossRefGoogle Scholar
  12. Mazzarella, L., Bonomi, G., Lubrano, M. C., Merlino, A., Riccio, A., Vergara, A., Vitagliano, L., Verde, C., and di Prisco, G. 2006a. Minimal structural requirements for root effect: crystal structure of the cathodic hemoglobin isolated from the antarctic fish Trematomus newnesi. Proteins 62:316–321.PubMedCrossRefGoogle Scholar
  13. Mazzarella, L., D’Avino, R., di Prisco, G., Savino, C., Vitagliano, L., Moody, P.C., and Zagari, A.: Crystal structure of Trematomus newnesi haemoglobin re-opens the root effect question. J. Mol. Biol. 287 (1999) 897–906.PubMedCrossRefGoogle Scholar
  14. Mazzarella, L., Vergara, A., Vitagliano, L., Merlino, A., Bonomi, G., Scala, S., Verde, C., and di Prisco, G. 2006b. High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: the role of histidine residues in modulating the strength of the root effect. Proteins 65:490–498.PubMedCrossRefGoogle Scholar
  15. Monod, J., Wyman, J., and Changeux, J.-P. 1965. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12:88–118.PubMedCrossRefGoogle Scholar
  16. Mylvaganam, S. E., Bonaventura, C., Bonaventura, J., and Getzoff, E. D. 1996. Structural basis for the root effect in haemoglobin. Nat. Struct. Biol. 3:275–283.PubMedCrossRefGoogle Scholar
  17. Perutz, M. F., and Brunori, M. 1982. Stereochemistry of cooperative effects in fish and amphibian haemoglobins. Nature 299:421–426.PubMedCrossRefGoogle Scholar
  18. Root, R.W. 1931. The respiratory function of the blood of marine fishes. Biol. Bull. Mar. Biol. Lab. Woods Hole 61:427–456.CrossRefGoogle Scholar
  19. Root, R.W., and Irving, L. 1941. The equilibrium between haemoglobin and oxygen in whole and hemolysed blood of the Tautog and a theory of the Haldane effect. Biol. Bull. Mar. Biol. Lab. Woods Hole 81:307–323.CrossRefGoogle Scholar
  20. Root, R. W., and Irving, L. 1943. The effect of carbon dioxide and lactic acid of the oxygen combining power of whole and hemolysed blood of the marine fish Tautog onitis. Biol. Bull. Mar. Biol. Lab. Woods Hole 84:207–212.CrossRefGoogle Scholar
  21. Wells, R. M. G. 1999. Evolution of haemoglobin function: molecular adaptation to environment. Clin. Exp. Pharm. Physiol. 26:591–595.CrossRefGoogle Scholar
  22. Wittenberg, J. B. 1958. The secretion of inert gas into the swim-bladder of fish. J. Gen. Physiol. 41:783–804.PubMedCrossRefGoogle Scholar
  23. Wittenberg, J. B. 1961. The secretion of oxygen into the swim-bladder of fish I. The transport of molecular oxygen. J. Gen. Physiol. 44:521–526.Google Scholar
  24. Wittenberg, J. B., and Haedrich, R. L. 1974. The choroid rete mirabile of the fish eye II. Distribution and relation to the pseudobranch and to the swim bladder rete mirabile. Biol. Bull. 146:137–156.PubMedCrossRefGoogle Scholar
  25. Wittenberg, J. B., and Wittenberg, B. A. 1961. The secretion of oxygen into the swim-bladder of fish. II. The simultaneous transport of carbon monoxide and oxygen. J. Gen. Physiol. 44:527–542.PubMedCrossRefGoogle Scholar
  26. Wittenberg, J. B., and Wittenberg, B. A. 1962. Active secretion of oxygen into the eye of fish. Nature 194:107–108.CrossRefGoogle Scholar
  27. Wittenberg, J. B., and Wittenberg, B. A. 1974. The choroid rete mirabile of the fish eye I. Oxygen secretion and structure: comparison with the swim-bladder rete mirabile. Biol. Bull. 146:116–136.PubMedCrossRefGoogle Scholar
  28. Wittenberg, J. B., Schwend, M. J., and Wittenberg, B. A. 1964. The secretion of oxygen into the swim-bladder of fish III The role of carbon dioxide. J. Gen. Physiol. 48:337–355.PubMedCrossRefGoogle Scholar
  29. Woodland, W. N. F. 1911. On the structure and function of the gas glands and retina mirabilia associated with the gas bladder of some teleostean fishes, with notes on the teleost pancreas. Proc. Zool. Soc. London 11:183.Google Scholar
  30. Wyman, J. 1964. Linked functions and reciprocal effects in hemoglobin: A second look. Adv. Prot. Chem. 19:223–286.CrossRefGoogle Scholar
  31. Yokoyama, T., Chong, K. T., Miyazaki, G., Morimoto, H., Shih, D. T., Unzai, S., Tame, J. R. H., and Park, S. Y. 2004. Novel mechanisms of pH sensitivity in tuna hemoglobin: a structural explanation of the Root effect. J. Biol. Chem. 279:28632–28640.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Satoru Unzai
    • 1
  • Kiyohiro Imai
    • 1
  • Sam-Yong Park
    • 1
  • Kiyoshi Nagai
    • 2
  • Tom Brittain
    • 3
  • Jeremy R. H. Tame
    • 4
  1. 1.Yokohama City UniversityTsurumi, YokohamaJapan
  2. 2.Laboratory of Molecular BiologyMedical Research Council CentreCambridgeUK
  3. 3.Metalloprotein Structure & Function Laboratory, School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  4. 4.Protein Design LaboratoryYokohama City UniversityYokohamaJapan

Personalised recommendations