Evolutionary Physiology of Oxygen Secretion in the Eye of Fishes of the Suborder Notothenioidei

  • Cinzia Verde
  • Michael Berenbrink
  • Guido di Prisco
Part of the Protein Reviews book series (PRON, volume 9)


We wish to tackle a survey on the overall understanding of the molecular properties, biological occurrence, physiological role and evolutionary origin of Root-effect Hbs.

Because high-Antarctic notothenioids still have Hbs endowed with Root effect also when the choroid rete is absent, this function may undergo neutral selection. Moreover, the deleterious effects of acidosis can be prevented by increase in the buffering capacity of Hb. Alternatively, high Hb buffer values may be related to the lower Hb content in the blood of notothenioids. As Hb is the main non-bicarbonate buffer in many vertebrates, a decrease in its concentration may entail detrimental consequences for blood acid-base regulation, which could be overcome by an increase in the number of buffering amino-acid residues per molecule. Whether these residues are the cause of the reduced Root effect, or the consequence of altered selection pressure on Hb buffer properties once the Root effect was diminished, remains an open question.


Evolutionary Physiology Antarctic Fish Bohr Effect Root Effect Neutral Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acierno, R., Maffia, M., Rollo, M., and Storelli, C. 1997. Buffer capacity in the blood of the hemoglobinless Antarctic fish Chionodraco hamatus. Comp. Biochem. Physiol. A 118:989–992.CrossRefGoogle Scholar
  2. Berenbrink, M. 2006. Evolution of vertebrate haemoglobins: Histidine side chains, specific buffer value and Bohr effect. Respir. Physiol. Neurobiol. 154:165–184.PubMedCrossRefGoogle Scholar
  3. Berenbrink, M. 2007. Historical reconstructions of evolving physiological complexity: O2 secretion in the eye and swimbladder of fishes. J. Exp. Biol. 209:1641–1652.CrossRefGoogle Scholar
  4. Berenbrink, M., Koldkjaer, P., Kepp, O., and Cossins, A. R. 2005. Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307:1752–1757.PubMedCrossRefGoogle Scholar
  5. Bonaventura, J., Gillen, R. G., and Riggs, A. 1974. The hemoglobin of the Crosspterygian fish, Latimeria chalumnae (Smith). Arch. Biochem. Biophys. 163:728–734.PubMedCrossRefGoogle Scholar
  6. Brittain, T. 2005. Root effect hemoglobins. J. Inorg. Biochem. 99:120–129.PubMedCrossRefGoogle Scholar
  7. Camardella, L., Caruso, C., D’Avino, R., di Prisco, G., Rutigliano, B., Tamburrini, M., Fermi, G., and Perutz, M. F. 1992. Haemoglobin of the Antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and crystal structure of its carbon-monoxy derivative. J. Mol. Biol. 224:449–460.PubMedCrossRefGoogle Scholar
  8. D’Avino, R., Caruso, C., Tamburrini, M., Romano, M., Rutigliano, B., Polverino de Laureto, P., Camardella, L., Carratore, V., and di Prisco, G. 1994. Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. J. Biol. Chem. 269:9675–9681.PubMedGoogle Scholar
  9. Dettaï, A., and Lecointre, G. 2004. In search for Notothenioid (Teleostei) relatives. Antarctic Sci. 16:71–85.CrossRefGoogle Scholar
  10. Dettaï, A., and Lecointre, G. 2005. Further support for the clades obtained by multiple molecular phylogenies in the acanthomorph bush. Comp. Rend.-Biol. 328:674–689.CrossRefGoogle Scholar
  11. di Prisco, G., Eastman, J. T., Giordano, D., Parisi, E., and Verde, C. 2007. Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution. Gene 398:143–155.PubMedCrossRefGoogle Scholar
  12. Eastman, J. T. 2006. Aspects of the morphology of phyletically basal bovichtid fishes of the Antarctic suborder Notothenioidei (Perciformes). Polar Biol. 29:754–763.CrossRefGoogle Scholar
  13. Eastman, J. T., and Lannoo, M. J. 2004. Brain and sense organ anatomy and histology in hemoglobinless Antarctic icefishes (Perciformes: Notothenioidei: Channichthyidae). J. Morphol. 260:117–140.PubMedCrossRefGoogle Scholar
  14. Egginton, S. 1997. A comparison of the response to induced exercise in red-and white-blooded Antarctic fishes. J. Comp. Physiol. 167:129–134.Google Scholar
  15. Feller, G., Poncin, A., Aittaleb, M., Schyns, R., and Gerday, C. 1994. The blood proteins of the Antarctic icefish Channichthys rhinoceratus: biological significance and purification of the two main components. J. Comp. Physiol. B 109:89–97.Google Scholar
  16. Huber, F., and Braunitzer, G. 1989. The primary structure of electric ray haemoglobin (Torpedo marmorata). Bohr effect and phosphate interaction. Biol. Chem. Hoppe-Seyler 370:831–838.PubMedGoogle Scholar
  17. Ito, N., Komiyama, N. H., and Fermi, G. 1995. Structure of deoxyhemoglobin of the Antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the Root effect by comparison of the liganded and unliganded hemoglobin structures. J. Mol. Biol. 250:648–658.PubMedCrossRefGoogle Scholar
  18. Lowe, T. E., and Wells, R. M. G. 1997. Exercise challenge in Antarctic fishes: do haema-tology and muscle metabolite levels limit swimming performance? Polar Biol. 17:211–218.CrossRefGoogle Scholar
  19. Maddison, D. R., Maddison, W. P. 2003. MacClade 4: Analysis of phylogeny and character evolution. Version 4.06. Sinauer Associates, Sunderland, MA.Google Scholar
  20. Mazzarella, L., D’Avino, R., di Prisco, G., Savino, C., Vitagliano, L., Moody, P. C. E., and Zagari, A. 1999. Crystal structure of Trematomus newnesi hemoglobin re-opens the Root effect question. J. Mol. Biol. 287:897–906.PubMedCrossRefGoogle Scholar
  21. Mazzarella, L., Bonomi, G., Lubrano, M., Merlino, A., Riccio, A., Vergara, A., Vitagliano, L., Verde, C., and di Prisco, G. 2006a. Minimal structural requirements for Root effect: crystal structure of the cathodic hemoglobin isolated from the Antarctic fish Trematomus newnesi. Proteins 62:316–321.PubMedCrossRefGoogle Scholar
  22. Mazzarella, L., Vergara, A., Vitagliano, L., Merlino, A., Bonomi, G., Scala, S., Verde, C., and di Prisco, G. 2006b. High-resolution crystal structure of deoxy haemoglobin from Trematomus bernacchii at different pH values: the role of histidine residues in modulating the strength of the Root effect. Proteins 65:490–498.PubMedCrossRefGoogle Scholar
  23. Monod, J., Wyman, J., and Changeux, J. P. 1965. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12:88–118.PubMedCrossRefGoogle Scholar
  24. Mylvaganam, S. E., Bonaventura, C., Bonaventura, J., and Getzoff, E. D. 1996. Structural basis for the Root effect in haemoglobin. Nature Struct. Biol. 3:275–283.PubMedCrossRefGoogle Scholar
  25. Near, T. J., Pesavento, J. J., and Cheng, C.-H. C. 2004. Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Mol. Phylogenet. Evol. 32:881–891.PubMedCrossRefGoogle Scholar
  26. Noble, R. W., Kwiatkowski, L. D., De Young, A., Davis, B. J., Haedrich, R. L., Tarn, L.T., and Riggs, A. F. 1986. Functional properties of hemoglobins from deep-sea fish: correlations with depth distribution and presence of a swimbladder. Biochim. Biophys. Acta 870:552–563.PubMedGoogle Scholar
  27. Pelster, B. 1997. Buoyancy at depth. In Deep-Sea Fish, eds. D. Randall and A. P. Farrell, pp. 195–237. San Diego: Academic Press.CrossRefGoogle Scholar
  28. Perutz, M. F., and Brunori, M. 1982. Stereochemistry of cooperative effects in fish and amphibian hemoglobins. Nature 229:421–442.CrossRefGoogle Scholar
  29. Perutz, M. F., Fermi, G., Luisi, B., Shanan, B., and Liddington, R. C. 1987. Stereochemistry of cooperative mechanisms in hemoglobin. Acc. Chem. Res. 20:309–321.CrossRefGoogle Scholar
  30. Riggs, A. 1988. The Bohr effect. Annu. Rev. Physiol. 50:181–204.PubMedCrossRefGoogle Scholar
  31. Ruud, J. T. 1954. Vertebrates without erythrocytes and blood pigment. Nature 173:848–850.PubMedCrossRefGoogle Scholar
  32. Sanchez, S., Dettai, A., Bonillo, C., Ozouf-Costaz, C., Detrich, H. W. III., and Lecointre, G. 2007. Molecular and morphological phylogenies of Antarctic teleostean family Nototheniidae, with emphasis on the Trematominae. Polar Biol. 30:155–166.CrossRefGoogle Scholar
  33. Stam, W. T, Beintema, J. J., D’Avino, R., Tamburrini, M., and di Prisco, G. 1997. Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei). J. Mol. Evol. 45:437–445.PubMedCrossRefGoogle Scholar
  34. Verde, C., De Rosa, M. C., Giordano, D., Mosca, D., de Pascale, D., Raiola, L., Cocca, E., Carratore, V., Giardina, B., and di Prisco, G. 2005. Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea. Biochem. J. 389:297–306.PubMedCrossRefGoogle Scholar
  35. Verde, C., Vergara, A., Giordano, D., Mazzarella, L., and di Prisco, G. 2007. The Root effect — a structural and evolutionary perspective. Antarctic Sci 19:271–278.CrossRefGoogle Scholar
  36. Wittenberg, J. B., Schwend, M. J., and Wittenberg B. A. 1964. The secretion of oxygen into the swim-bladder of fish III. The role of carbon dioxide. J. Gen. Physiol. 48:337–355.PubMedCrossRefGoogle Scholar
  37. Wittenberg, B. A., Briehl, R. W., and Wittenberg, J. B. 1965. Haemoglobins of invertebrate tissues. Nerve haemoglobins of Aphrodite, Aplysia and Halosydna. Biochem. J. 96:363–371.PubMedGoogle Scholar
  38. Wittenberg, B. A., Brunori, M., Antonini, E., Wittenberg, J. B., and Wyman, J. 1965. Kinetics of the reactions of Aplysia myoglobin with oxygen and carbon monoxide. Arch. Biochem. Biophys. 111:576–579.PubMedCrossRefGoogle Scholar
  39. Wittenberg, J. B., and Haedrich, R. L. 1974. The choroid rete mirabile of the fish eye. II. Distribution and relation to the pseudobranch and to the swim-bladder rete mirabile. Biol. Bull. 146:137–156.PubMedCrossRefGoogle Scholar
  40. Wittenberg, J. B., and Wittenberg B. A. 1961. The secretion of oxygen into the swim-bladder of fish. II. The transport of molecular oxygen. J. Gen. Physiol. 44:527–542.PubMedCrossRefGoogle Scholar
  41. Wujcik, J. M., Wang, G., Eastman, J. T., and Sidell, B. D. 2007. Morphometry of retinal vasculature in Antarctic fishes is dependent upon the level of hemoglobin in circulation. J. Exp. Biol. 210:815–824.PubMedCrossRefGoogle Scholar
  42. Yokoyama, T., Chong, K. T., Miyazaki, G., Morimoto, H., Shih, D. T. B., Unzai, S., Tame, J. R. H., and Park S.-Y. 2004. Novel mechanisms of pH sensitivity in tuna hemoglobin: a structural explanation of the Root effect. J. Biol. Chem. 279:28632–28640.PubMedCrossRefGoogle Scholar
  43. Yonetani, T., Park, S., Tsuneshige, A., Imai, K., and Kanaori, K. 2002. Global allostery model of hemoglobin. J. Biol. Chem. 277:34508–34520.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Cinzia Verde
    • 1
  • Michael Berenbrink
    • 2
  • Guido di Prisco
    • 1
  1. 1.Institute of Protein BiochemistryCNRNaplesItaly
  2. 2.Integrative Biology Research Division, School of Biological SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations