Advertisement

The Phylogeny and Structural Properties of 2/2 Haemoglobins

  • David A. Vuletich
  • Juliette T. J. Lecomte
Part of the Protein Reviews book series (PRON, volume 9)

Abstract

In 2002, Jonathan and Beatrice Wittenberg inspected the 42 protein sequences then known to belong to the lineage of truncated (two-on-two) globins. They pointed out that these proteins parted into three distinct phylogenetic groups. The classification allowed for the identification of essential residues surrounding the heme group and guided subsequent structural studies. It also provided clear targets for further experimental work and set the stage for analyses of gene history. In this chapter, the status of the two-on-two globin lineage is updated. It is shown that the 2002 observations withstand the test of additional sequences and structures. The two-on-two family, which has grown practically ten-fold since the original study, conforms to the group-specific mechanisms of ligand stabilisation and fold features anticipated in the seminal Wittenberg contribution.

Keywords

Heme Group Exogenous Ligand Heme Pocket Geobacillus Stearothermophilus Servation Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berenbrink, M. 2006. Evolution of vertebrate haemoglobins: Histidine side chains, specific buffer value and Bohr effect. Respir. Physiol. Neurobiol. 154:165–184.PubMedCrossRefGoogle Scholar
  2. Bolognesi, M., Bordo, D., Rizzi, M., Tarricone, C., and Ascenzi, P. 1997. Nonvertebrate hemoglobins: structural bases for reactivity. Prog. Biophys. Mol. Biol. 68:29–68.PubMedCrossRefGoogle Scholar
  3. Bolognesi, M., Rosano, C., Losso, R., Borassi, A., Rizzi, M., Wittenberg, J. B., Boffi, A., and Ascenzi, P. 1999. Cyanide binding to Lucina pectinata hemoglobin I and to sperm whale myoglobin: an x-ray crystallographic study. Biophys. J. 77:1093–1099.PubMedCrossRefGoogle Scholar
  4. Bonamore, A., Ilari, A., Giangiacomo, L., Bellelli, A., Morea, V., and Boffi, A. 2005. A novel thermostable hemoglobin from the actinobacterium Thermobifida fusca. FEBS J. 272:4189–4201.PubMedCrossRefGoogle Scholar
  5. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., 3rd, et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544.PubMedCrossRefGoogle Scholar
  6. Couture, M., Chamberland, H., St-Pierre, B., Lafontaine, J., and Guertin, M. 1994. Nuclear genes encoding chloroplast hemoglobins in the unicellular green alga Chlamydomonas eugametos. Mol. Gen. Genet. 243:185–197.PubMedGoogle Scholar
  7. Couture, M., Das, T. K., Lee, H. C., Peisach, J., Rousseau, D. L., Wittenberg, B. A., Wittenberg, J. B., and Guertin, M. 1999. Chlamydomonas chloroplast ferrous hemoglobin. Heme pocket structure and reactions with ligands. J. Biol. Chem. 274:6898–6910.PubMedCrossRefGoogle Scholar
  8. Couture, M., Das, T. K., Savard, P. Y., Ouellet, Y., Wittenberg, J. B., Wittenberg, B. A., Rousseau, D. L., and Guertin, M. 2000. Structural investigations of the hemoglobin of the cyanobacterium Synechocystis PCC6803 reveal a unique distal heme pocket. Eur. J. Biochem. 267:4770–4780.PubMedCrossRefGoogle Scholar
  9. Das, T. K., Weber, R. E., Dewilde, S., Wittenberg, J. B., Wittenberg, B. A., Yamauchi, K., Van Hauwaert, M. L., Moens, L., and Rousseau, D. L. 2000. Ligand binding in the ferric and ferrous states of Paramecium hemoglobin. Biochemistry 39:14330–14340.PubMedCrossRefGoogle Scholar
  10. di Prisco, G., Eastman, J. T., Giordano, D., Parisi, E., and Verde, C. 2007. Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution. Gene 398:143–155.PubMedCrossRefGoogle Scholar
  11. Egawa, T., and Yeh, S.R. 2005. Structural and functional properties of hemoglobins from unicellular organisms as revealed by resonance Raman spectroscopy. J. Inorg. Biochem. 99:72–96.PubMedCrossRefGoogle Scholar
  12. Giangiacomo, L., Ilari, A., Boffi, A., Morea, V., and Chiancone, E. 2005. The truncated oxygen-avid hemoglobin from Bacillus subtilis. X-ray structure and ligand binding properties. J. Biol. Chem. 280:9192–9202.PubMedCrossRefGoogle Scholar
  13. Hamdane, D., Kiger, L., Dewilde, S., Green, B. N., Pesce, A., Uzan, J., Burmester, T., Hankeln, T., Bolognesi, M., Moens, L., et al. 2003. The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin. J. Biol. Chem. 278:51713–51721.PubMedCrossRefGoogle Scholar
  14. Hill, D. R., Belbin, T. J., Thorsteinsson, M. V., Bassam, D., Brass, S., Ernst, A., Boger, P., Paerl, H., Mulligan, M. E., and Potts, M. 1996. GlbN (cyanoglobin) is a peripheral membrane protein that is restricted to certain Nostoc spp. J. Bacteriol. 178:6587–6598.PubMedGoogle Scholar
  15. Ilari, A., Kjelgaard, P., von Wachenfeldt, C., Catacchio, B., Chiancone, E., and Boffi, A. 2007. Crystal structure and ligand binding properties of the truncated hemoglobin from Geobacillus stearothermophilus. Arch. Biochem. Biophys. 457:85–94.PubMedCrossRefGoogle Scholar
  16. Iwaasa, H., Takagi, T., and Shikama, K. 1989. Protozoan myoglobin from Paramecium caudatum. Its unusual amino acid sequence. J. Mol. Biol. 208:355–358.PubMedCrossRefGoogle Scholar
  17. Iwaasa, H., Takagi, T., and Shikama, K. 1990. Protozoan hemoglobin from Tetrahymena pyriformis. Isolation, characterization, and amino acid sequence. J. Biol. Chem. 265:8603–8609.PubMedGoogle Scholar
  18. Kapp, O. H., Moens, L., Vanfleteren, J., Trotman, C. N., Suzuki, T., and Vinogradov, S. N. 1995. Alignment of 700 globin sequences: extent of amino acid substitution and its correlation with variation in volume. Protein Sci. 4:2179–2190.PubMedGoogle Scholar
  19. Keilin, D., and Ryley, J. F. 1953. Haemoglobin in Protozoa. Nature 172:451.PubMedCrossRefGoogle Scholar
  20. Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., and Phillips, D. C. 1958. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181:662–666.PubMedCrossRefGoogle Scholar
  21. Kendrew, J. C., Dickerson, R. E., Stranberg, B. E., Hart, R. G., Davies, D. R., Phillips, D. C., and Shore, V. C. 1960. Structure of Myoglobin. Three-dimensional Fourier synthesis at 2Å. resolution. Nature 185:422–427.PubMedCrossRefGoogle Scholar
  22. Kraulis, P. 1991. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24:946–950.CrossRefGoogle Scholar
  23. Kumar, S., Tamura, K., Jakobsen, I. B., and Nei, M. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245.PubMedCrossRefGoogle Scholar
  24. Milani, M., Pesce, A., Nardini, M., Ouellet, H., Ouellet, Y., Dewilde, S., Bocedi, A., Ascenzi, P., Guertin, M., Moens, L., Friedman, J. M., Wittenberg, J.B., and Bolognesi, M. 2005. Structural bases for heme binding and diatomic ligand recognition in truncated hemoglobins. J. Inorg. Biochem. 99:97–109.PubMedCrossRefGoogle Scholar
  25. Milani, M., Savard, P. Y., Ouellet, H., Ascenzi, P., Guertin, M., and Bolognesi, M. 2003. A TyrCDl/TrpG8 hydrogen bond network and a TyrB10TyrCD1 covalent link shape the heme distal site of Mycobacterium tuberculosis hemoglobin O. Proc. Natl. Acad. Sci. U.S.A. 100:5766–5771.PubMedCrossRefGoogle Scholar
  26. Moens, L., Vanfleteren, J., Van de Peer, Y., Peeters, K., Kapp, O., Czeluzniak, J., Goodman, M., Blaxter, M., and Vinogradov, S. 1996. Globins in nonvertebrate species: dispersal by horizontal gene transfer and evolution of the structure-function relationships. Mol. Biol. Evol. 13:324–333.PubMedGoogle Scholar
  27. Nardini, M., Pesce, A., Labarre, M., Richard, C., Bolli, A., Ascenzi, P., Guertin, M., and Bolognesi, M. 2006. Structural determinants in the group III truncated hemoglobin from Campylobacter jejuni. J. Biol. Chem. 281:37803–37812.PubMedCrossRefGoogle Scholar
  28. Nicolis, S., Monzani, E., Ciaccio, C., Ascenzi, P., Moens, L., and Casella, L. 2007. Reactivity and endogenous modification by nitrite and hydrogen peroxide: does human neuroglobin act only as a scavenger? Biochem. J. 407:89–99.PubMedCrossRefGoogle Scholar
  29. Ouellet, H., Juszczak, L., Dantsker, D., Samuni, U., Ouellet, Y. H., Savard, P. Y., Wittenberg, J. B., Wittenberg, B. A., Friedman, J. M., and Guertin, M. 2003. Reactions of Mycobacterium tuberculosis truncated hemoglobin O with ligands reveal a novel lig-and-inclusive hydrogen bond network. Biochemistry 42:5764–5774.PubMedCrossRefGoogle Scholar
  30. Perutz, M. F. 1960. Structure of hemoglobin. Brookhaven Symp. Biol. 13:165–183.PubMedGoogle Scholar
  31. Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., and Bolognesi, M. 2000. A novel two-over-two α-helical sandwich fold is characteristic of the truncated hemoglobin family. EMBO J. 19:2424–2434.PubMedCrossRefGoogle Scholar
  32. Pesce, A., Dewilde, S., Kiger, L., Milani, M., Ascenzi, P., Marden, M. C., Van Hauwaert, M. L., Vanfleteren, J., Moens, L., and Bolognesi, M. 2001. Very high resolution structure of a trematode hemoglobin displaying a TyrB10-TyrE7 heme distal residue pair and high oxygen affinity. J. Mol. Biol. 309:1153–1164.PubMedCrossRefGoogle Scholar
  33. Potts, M., Angeloni, S. V., Ebel, R. E., and Bassam, D. 1992. Myoglobin in a Cyanobacterium. Science 256:1690–1691.PubMedCrossRefGoogle Scholar
  34. Ptitsyn, O. B., and Ting, K. L. 1999. Non-functional conserved residues in globins and their possible role as a folding nucleus. J. Mol. Biol. 291:671–682.PubMedCrossRefGoogle Scholar
  35. Sato, T., and Tamiya, H. 1937. Ueber die Atmungsfarbstoffe von Paramecium. Cytologia (Tokyo) Fujii-Jubilaei Volume: 1133–1138.Google Scholar
  36. Scott, N. L., Falzone, C. J., Vuletich, D. A., Zhao, J., Bryant, D. A., and Lecomte, J. T. J. 2002. Truncated hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002: evidence for hexacoordination and covalent adduct formation in the ferric recombinant protein. Biochemistry 41:6902–6910.PubMedCrossRefGoogle Scholar
  37. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876–4882.PubMedCrossRefGoogle Scholar
  38. Vinogradov, S. N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Guertin, M., Gough, J., Dewilde, S., Moens, L., and Vanfleteren, J. R. 2005. Three globin lineages belonging to two structural classes in genomes from the three kingdoms of life. Proc. Natl. Acad. Sci. U.S.A. 102:11385–11389.PubMedCrossRefGoogle Scholar
  39. Vinogradov, S. N., Hoogewijs, D., Bailly, X., Mizuguchi, K., Dewilde, S., Moens, L., and Vanfleteren, J.R. 2007. A model of globin evolution. Gene 398:132–142.PubMedCrossRefGoogle Scholar
  40. Vuletich, D. A., and Lecomte, J. T. J. 2006. A phylogenetic and structural analysis of truncated hemoglobins. J. Mol. Evol. 62:196–210.PubMedCrossRefGoogle Scholar
  41. Wainwright, L. M., Wang, Y., Park, S. F., Yeh, S. R., and Poole, R. K. 2006. Purification and spectroscopic characterization of Ctb, a group III truncated hemoglobin implicated in oxygen metabolism in the food-borne pathogen Campylobacter jejuni. Biochemistry 45:6003–6011.PubMedCrossRefGoogle Scholar
  42. Weber, R. E., and Fago, A. 2004. Functional adaptation and its molecular basis in vertebrate hemoglobins, neuroglobins and cytoglobins. Respir. Physiol. Neurobiol. 144:141–159.PubMedCrossRefGoogle Scholar
  43. Weber, R. E., and Vinogradov, S. N. 2001. Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol. Rev. 81:569–628.PubMedGoogle Scholar
  44. Wittenberg, J. B. 2007. On optima: the case of myoglobin-facilitated oxygen diffusion. Gene 398:156–161.PubMedCrossRefGoogle Scholar
  45. Wittenberg, J. B., Bolognesi, M., Wittenberg, B. A., and Guertin, M. 2002. Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J. Biol. Chem. 277:871–874.PubMedCrossRefGoogle Scholar
  46. Wittenberg, J. B., and Wittenberg, B. A. 2003. Myoglobin function reassessed. J. Exp. Biol. 206:2011–2020.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • David A. Vuletich
    • 1
  • Juliette T. J. Lecomte
    • 1
  1. 1.Chemistry DepartmentThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations