Skip to main content

A Crystallographer’s Perspective on the 2/2Hb Family

  • Chapter
Dioxygen Binding and Sensing Proteins

Part of the book series: Protein Reviews ((PRON,volume 9))

  • 366 Accesses

Abstract

The discovery of 2/2Hbs as short haemoproteins structurally related to haemoglobins, in the 1990s, was complemented by extensive sequence and crystallo-graphic investigations in the early 2000s. Amino acid sequences first provided a clear indication that the 2/2Hb family (formerly known as “truncated Hbs”) is composed of three main protein groups (I, II and III) that display low primary structure conservation relative to vertebrate Hbs. Crystal structures showed that a simple protein fold, essentially composed of four α-helices, is common to members of all three groups. Specific structural features can however be recognised in each 2/2Hb group. Among these, a tightly intertwined network of hydrogen bonds stabilising the heme exogenous ligand, based on group-specific distal site residues, is a landmark of all 2/2Hbs. We present here a review of the different structural aspects discovered for the 2/2Hb family, in the light of the currently known three-dimensional structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bolognesi, M., Bordo, D., Rizzi, M., Tarricone, C., and Ascenzi, P. 1997. Nonvertebrate hemoglobins: structural bases for reactivity. Prog. Biophys. Mol. Biol. 68:29–68.

    Article  PubMed  CAS  Google Scholar 

  • Bolognesi, M., Rosano, C., Losso, R., Borassi, A., Rizzi, M., Wittenberg, J. B., Boffi, A., and Ascenzi, P. 1999. Cyanide binding to Lucina pectinata hemoglobin I and to sperm whale myoglobin: an x-ray crystallographic study. Biophys. J. 77:1093–1099.

    Article  PubMed  CAS  Google Scholar 

  • Bonamore, A., Gentili, P., Ilari, A., Schininà, M. E., and Boffi, A. 2003. Escherichia coli Flavohemoglobin Is an Efficient Alkylhydroperoxide Reductase. J. Biol. Chem. 278:22272–22277.

    Article  PubMed  CAS  Google Scholar 

  • Couture, M., Chamberland, H., St-Pierre, B., Lafontaine, J., and Guertin, M. 1994. Nuclear genes encoding chloroplast hemoglobins in the unicellular green alga Chlamydomonas eugametos. Mol. Gen. Genet. 243:185–197.

    PubMed  CAS  Google Scholar 

  • Couture, M., and Guertin, M. 1996. Purification and spectroscopic characterization of a recombinant chloroplastic hemoglobin from the green unicellular alga Chlamydomonas eugametos. Eur. J. Biochem. 242:779–787.

    Article  PubMed  CAS  Google Scholar 

  • Couture, M, Yeh, S. R., Wittenberg, B. A., Wittenberg, J. B., Ouellet, Y., Rousseau, D. L., and Guertin, M. 1999. A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U.S.A. 96:11223–11228.

    Article  PubMed  CAS  Google Scholar 

  • Couture, M., Das, T. K., Savard, P. Y., Ouellet, Y., Wittenberg, J. B., Wittenberg, B. A., Rousseau, D. L., and Guertin, M. 2000. Structural investigations of the hemoglobin of the cyanobacterium Synechocystis PCC6803 reveal a unique distal heme pocket. Eur. J. Biochem. 267:4770–4780.

    Article  PubMed  CAS  Google Scholar 

  • Falzone, C. J., Vu, B. C., Scott, N. L., and Lecomte, J. T. 2002. The solution structure of the recombinant hemoglobin from the cyanobacterium Synechocystis sp. PCC 6803 in its hemichrome state. J. Mol. Biol. 324:1015–1029.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, P. R. 2005. Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin, myoglobin and their associated reductases. J. Inorg. Biochem. 99:247–266.

    Article  PubMed  CAS  Google Scholar 

  • Giangiacomo, L., Ilari, A., Boffi, A., Morea, V., and Chiancone, E. 2005. The truncated oxygen-avid hemoglobin from Bacillus subtilis: X-ray structure and ligand binding properties. J. Biol. Chem. 280:9192–9202.

    Article  PubMed  CAS  Google Scholar 

  • Hardison, R. 1998. Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J. Exp. Biol. 201:1099–1117.

    PubMed  CAS  Google Scholar 

  • Hill, D. R., Belbin, T. J., Thorsteinsson, M. V., Bassam, D., Brass, S., Ernst, A., Boger, P., Paerl, H., Mulligan, M. E., and Potts, M. 1996. GlbN (cyanoglobin) is a peripheral membrane protein that is restricted to certain Nostoc spp. J. Bacteriol. 178:6587–6598.

    PubMed  CAS  Google Scholar 

  • Holm, L., and Sander, C. 1993. Structural alignment of globins, phycocyanins and colicin A. FEBS Lett. 315:301–306.

    Article  PubMed  CAS  Google Scholar 

  • Hoy, J. A., Kundu, S., Trent, J. T. 3rd, Ramaswamy, S., and Hargrove, M. S. 2004. The crystal structure of Synechocystis hemoglobin with a covalent heme linkage. J. Biol. Chem. 279:16535–16542.

    Article  PubMed  CAS  Google Scholar 

  • Imai, K. 1999. Physiology: The haemoglobin enzyme. Nature 401:437–439.

    Article  PubMed  CAS  Google Scholar 

  • Iwaasa, H., Takagi, T., and Shikama, K. 1989. Protozoan myoglobin from Paramecium caudatum. Its unusual amino acid sequence. J. Mol. Biol. 208:355–358.

    Article  PubMed  CAS  Google Scholar 

  • Milani, M., Pesce, A., Ouellet, Y., Ascenzi, P., Guertin, M., and Bolognesi, M. 2001. Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme. EMBO J. 20:3902–3909.

    Article  PubMed  CAS  Google Scholar 

  • Milani, M., Savard, P. Y., Ouellet, H., Ascenzi, P., Guertin, M., and Bolognesi, M. 2003. A TyrCDl/TrpG8 hydrogen bond network and a TyrB10TyrCD1 covalent link shape the heme distal site of Mycobacterium tuberculosis hemoglobin O. Proc. Natl. Acad. Sci. U.S.A. 100:5766–5771.

    Article  PubMed  CAS  Google Scholar 

  • Milani, M., Ouellet, Y., Ouellet, H., Guertin, M., Boffi, A., Antonini, G., Bocedi, A., Mattu, M., Bolognesi, M., and Ascenzi, P. 2004. Cyanide binding to truncated hemoglobins: a crystallographic and kinetic study. Biochemistry 43:5213–5221.

    Article  PubMed  CAS  Google Scholar 

  • Milani, M., Pesce, A., Nardini, M., Ouellet, H., Ouellet, Y., Dewilde, S., Bocedi, A., Ascenzi, P., Guertin, M., Moens, L., Friedman, J. M., Wittenberg, J. B., and Bolognesi, M. 2005. Structural bases for heme binding and diatomic ligand recognition in truncated hemoglobins. J. Inorg. Biochem. 99:97–109.

    Article  PubMed  CAS  Google Scholar 

  • Minning, D. M., Gow, A. J., Bonaventura, J., Braun, R., Dewhirst, M., Goldberg, D. E., and Stamler, J. S. 1999. Ascaris haemoglobin is a nitric oxide-activated ‘deoxygenase’ Nature 401:497–502.

    Article  PubMed  CAS  Google Scholar 

  • Nardini, M., Pesce, A., Labarre, M., Richard, C., Bolli, A., Ascenzi, P., Guertin, M., and Bolognesi, M. 2006. Structural determinants in the group III truncated hemoglobin from Campylobacter jejuni. J. Biol. Chem. 281:37803–37812.

    Article  PubMed  CAS  Google Scholar 

  • Nardini, M., Pesce, A., Milani, M., and Bolognesi, M. 2007. Protein fold and structure in the truncated (2/2) globin family. Gene 398:2–11.

    Article  PubMed  CAS  Google Scholar 

  • Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., Guertin, M., 2002. Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc. Natl. Acad. Sci. U.S.A. 99:5902–5907.

    Article  PubMed  CAS  Google Scholar 

  • Ouellet, H., Juszczak, L., Dantsker, D., Samuni, U., Ouellet, Y. H., Savard, P. Y., Wittenberg, J. B., Wittenberg, B. A., Friedman, J. M., and Guertin, M. 2003. Reactions of Mycobacterium tuberculosis truncated hemoglobin O with ligands reveal a novel lig-and-inclusive hydrogen bond network. Biochemistry 42:5764–5774.

    Article  PubMed  CAS  Google Scholar 

  • Pathania, R., Navani, N. K., Gardner, A. M., Gardner, P. R., and Dikshit, K. L., 2002. Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia coli. Mol. Microbiol. 45:1303–1314.

    Article  PubMed  CAS  Google Scholar 

  • Perutz, M. F. 1979. Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu. Rev. Biochem. 48:327–386.

    Article  PubMed  CAS  Google Scholar 

  • Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., and Bolognesi, M. 2000. A novel two-over-two alpha-helical sandwich fold is characteristic of the truncated hemoglobin family. EMBO J. 19:2424–2434.

    Article  PubMed  CAS  Google Scholar 

  • Potts, M., Angeloni, S. V., Ebel, R. E., and Bassam, D. 1992. Myoglobin in a cyanobacterium. Science 256:1690–1691.

    Article  PubMed  CAS  Google Scholar 

  • Samuni, U., Dankster, D., Ray, A., Wittenberg, J. B., Wittenberg, B. A., Dewilde, S., Moens, L., Ouellet, Y., Guertin, M., and Friedman, J. 2003. Kinetic modulation in carbonmonoxy derivatives of truncated hemoglobins: the role of distal heme pocket residues and extended apolar tunnel. J. Biol. Chem. 278:27241–27250.

    Article  PubMed  CAS  Google Scholar 

  • Scott, N. L., Falzone, C. J., Vuletich, D. A., Zhao, J., Bryant, D. A., and Lecomte, J. T. 2002. Truncated hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002: evidence for hexacoordination and covalent adduct formation in the ferric recombinant protein. Biochemistry 41:6902–6910.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, T. 1993. Hemoglobin from single-celled organisms. Curr. Opin. Struct. Biol. 3:413–418.

    Article  CAS  Google Scholar 

  • Tarricone, C., Galizzi, A., Coda, A., Ascenzi, P., and Bolognesi, M. 1997. Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. Structure 5:497–507.

    Article  PubMed  CAS  Google Scholar 

  • Thorsteinsson, M. V., Bevan, D. R., and Potts, M. 1999. A cyanobacterial hemoglobin with unusual ligand binding kinetics and stability properties. Biochemistry 38:2117–2126.

    Article  PubMed  CAS  Google Scholar 

  • Trent, J. T. 3rd., Kundu, S., Hoy, J. A., and Hargrove, M. S. 2004. Crystallographic analysis of synechocystis cyanoglobin reveals the structural changes accompanying ligand binding in a hexacoordinate hemoglobin. J. Mol. Biol. 341:1097–1108.

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov, S. N., Hoogewijs, D., Bailly, X., Mizuguchi, K., Dewilde, S., Moens, L., and Vanfleteren, J. R. 2007. A model of globin evolution. Gene 398:132–142.

    Article  PubMed  CAS  Google Scholar 

  • Visca, P., Fabozzi, G., Petrucca, A., Ciaccio, C., Coletta, M., De Sanctis, G., Bolognesi, M., Milani, M., and Ascenzi, P. 2002. The truncated hemoglobin from Mycobacterium leprae. Biochem. Biophys. Res. Commun. 294:1064–1070.

    Article  PubMed  CAS  Google Scholar 

  • Vu, B. C., Nothnagel, H. J., Vuletich, D. A., Falzone, C. J., and Lecomte, J. T. J. 2004. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin. Biochemistry. 43:12622–12633.

    Article  PubMed  CAS  Google Scholar 

  • Vuletich, D. A., and Lecomte, J. T. 2006. A phylogenetic and structural analysis of truncated hemoglobins. J. Mol. Evol. 62:196–210.

    Article  PubMed  CAS  Google Scholar 

  • Wainwright, L. M., Elvers, K. T., Park, S. F., and Poole, R. K. 2005. A truncated haemoglobin implicated in oxygen metabolism by the microaerophilic food-borne pathogen Campylobacter jejuni. Microbiology 151:4079–4091.

    Article  PubMed  CAS  Google Scholar 

  • Wainwright, L. M., Wang, Y., Park, S. F., Yeh, S. R., and Poole, R. K. 2006. Purification and spectroscopic characterization of Ctb, a group III truncated hemoglobin implicated in oxygen metabolism in the food-borne pathogen Campylobacter jejuni. Biochemistry 45:6003–6011.

    Article  PubMed  CAS  Google Scholar 

  • Wittenberg, J. B., and Wittenberg, B. A. 1990. Mechanisms of cytoplasmic hemoglobin and myoglobin function. Annu. Rev. Biophys. Chem. 19:217–241.

    Article  CAS  Google Scholar 

  • Wittenberg, J. B., Bolognesi, M., Wittenberg, B. A., and Guertin, M. 2002. Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J. Biol. Chem. 277: 871–874.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Kloek, A. P., Goldberg, D. E., and Matthews, F. S. 1995. The structure of Ascaris hemoglobin domain I at 2.2 A resolution: molecular features of oxygen avidity. Proc. Natl. Acad. Sci. U.S.A. 92:4224–4228.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, S. R., Couture, M., Ouellet, Y., Guertin, M., and Rousseau, D. L. 2000. A cooperative oxygen binding hemoglobin from Mycobacterium tuberculosis. Stabilization of heme ligands by a distal tyrosine residue. J. Biol. Chem. 275:1679–1684.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Italia

About this chapter

Cite this chapter

Pesce, A., Milani, M., Nardini, M., Bolognesi, M. (2008). A Crystallographer’s Perspective on the 2/2Hb Family. In: Bolognesi, M., di Prisco, G., Verde, C. (eds) Dioxygen Binding and Sensing Proteins. Protein Reviews, vol 9. Springer, Milano. https://doi.org/10.1007/978-88-470-0807-6_4

Download citation

Publish with us

Policies and ethics