Skip to main content

Microbial Haemoglobins: Proteins at the Crossroads of Oxygen and Nitric Oxide Metabolism

  • Chapter
Dioxygen Binding and Sensing Proteins

Part of the book series: Protein Reviews ((PRON,volume 9))

Abstract

The globins of microorganisms were ignored for many decades after their discovery by Warburg in the 1930s and rediscovery by Keilin in the 1950s. Three classes of microbial globin are now recognised, all having features of the classical globin protein fold. The first is typified by the myoglobin-like protein, Vgb, from the bacterium Vitreoscilla, and by the Cgb protein of Campylobacter jejuni. Second, the truncated globins, widely distributed in bacteria, microbial eukaryotes and plants, are characterised by a two-over-two helical structure while retaining the essential features of the globin superfamily. The third and best understood class are the flavohaemoglobins, possessing an additional domain with binding sites for FAD and NAD(P)H. Flavohaemoglobins have no known physiological role in oxygen metabolism but undoubtedly confer protection from NO, as do some, but not all, of the myoglobin-like and truncated microbial globins. This chapter honours the contributions of Beatrice and Jonathan Wittenberg to globin research, specifically their work on bacterial truncated globins and their thoughtful consideration of the role of the bacterial myoglobin-like proteins. The focus of the chapter is on recent and current work from the Poole laboratory, with reference to earlier studies by the Wittenbergs. We have investigated all three classes of bacterial globins and used physiological and genetic methods to yield insights into globin function and reveal new roles for these old proteins in pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angelo, M., Singel, D. J., and Stamler, J. S. 2006. An S-nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate. Proc. Natl. Acad. Sci. U.S.A. 103:8366–8371.

    Article  PubMed  CAS  Google Scholar 

  • Bang, I. S., Liu, L. M., Vazquez-Torres, A., Crouch, M. L., Stamler, J. S., and Fang, F. C. 2006. Maintenance of nitric oxide and redox homeostasis by the Salmonella flavohemoglobin Hmp. J. Biol. Chem. 281:28039–28047.

    Article  PubMed  CAS  Google Scholar 

  • Boccara, M., Mills, C. E., Zeier, J., Anzi, C., Lamb, C., Poole, R. K., and Delledonne, M. 2005. Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects the plant hypersensitive reaction by intercepting nitric oxide produced by the host. Plant J. 43:226–237.

    Article  PubMed  CAS  Google Scholar 

  • Bodenmiller, D. M., and Spiro, S. 2006. The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J. Bacteriol. 188:874–881.

    Article  PubMed  CAS  Google Scholar 

  • Borutaite, V., Morkuniene, R., and Brown, G. C. 2000. Nitric oxide donors, nitrosothiols and mitochondrial respiration inhibitors induce caspase activation by different mechanisms. FEBS Lett. 467:155–159.

    Article  PubMed  CAS  Google Scholar 

  • Couture, M., Das, T. K., Lee, H. C., Peisach, J., Rousseau, D. L., Wittenberg, B. A., Wittenberg, J. B., and Guertin, M. 1999. Chlamydomonas chloroplast ferrous hemoglobin-Heme pocket structure and reactions with ligands. J. Biol. Chem. 274:6898–6910.

    Article  PubMed  CAS  Google Scholar 

  • Couture, M., Das, T. K., Savard, P. Y., Ouellet, Y., Wittenberg, J. B., Wittenberg, B. A., Rousseau, D. L., and Guertin, M. 2000. Structural investigations of the hemoglobin of the cyanobacterium Synechocystis PCC6803 reveal a unique distal heme pocket. Eur. J. Biochem. 267:4770–4780.

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Ramos, H., Crack, J., Wu, G., Hughes, M. N., Scott, C, Thomson, A. J., Green, J., and Poole, R. K. 2002. NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J. 21:3235–3244.

    Article  PubMed  CAS  Google Scholar 

  • Dantsker, D., Samuni, U., Ouellet, Y., Wittenberg, B. A., Wittenberg, J. B., Milani, M., Bolognesi, M., Guertin, M., and Friedman, J. M. 2004. Viscosity-dependent relaxation significantly modulates the kinetics of CO recombination in the truncated hemoglobin TrHbN from Mycobacterium tuberculosis. J. Biol. Chem. 279:38844–38853.

    Article  PubMed  CAS  Google Scholar 

  • Das, T. K., Couture, M., Lee, H. C, Peisach, J., Rousseau, D. L., Wittenberg, B. A., Wittenberg, J. B., and Guertin, M. 1999. Identification of the ligands to the ferric heme of Chlamydomonas chloroplast hemoglobin: Evidence for ligation of tyrosine-63 (B10) to the heme. Biochemistry 38:15360–15368.

    Article  PubMed  CAS  Google Scholar 

  • Das, T. K., Weber, R. E., Dewilde, S., Wittenberg, J. B., Wittenberg, B. A., Yamauchi, K., VanHauwaert, M. L., Moens, L., and Rousseau, D. L. 2000. Ligand binding in the ferric and ferrous states of Paramecium hemoglobin. Biochemistry 39:14330–14340.

    Article  PubMed  CAS  Google Scholar 

  • D’Autreaux, B., Touati, D., Bersch, B., Latour, J. M., and Michaud-Soret, I. 2002. Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proc. Natl. Acad. Sci. U.S.A. 99:16619–16624.

    Article  PubMed  CAS  Google Scholar 

  • Dikshit, R. P., Dikshit, K. L., Liu, Y. X., and Webster, D. A. 1992. The bacterial hemoglobin from Vitreoscilla can support the aerobic growth of Escherichia coli lacking terminal oxidases. Arch. Biochem. Biophys. 293:241–245.

    Article  PubMed  CAS  Google Scholar 

  • Elvers, K. T., Wu, G., Gilberthorpe, N. J., Poole, R. K., and Park, S. F. 2004. Role of an inducible single-domain hemoglobin in mediating resistance to nitric oxide and nitrosative stress in Campylobacter jejuni and Campylobacter coli. J. Bacteriol. 186:5332–5341.

    Article  PubMed  CAS  Google Scholar 

  • Elvers, K. T., Turner, S. M., Wainwright, L. M., Marsden, G., Hinds, J., Cole, J. A., Poole, R. K., Penn, C. W., and Park, S. F. 2005. NssR, a member of the Crp-Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin. Mol. Microbiol. 57:735–750.

    Article  PubMed  CAS  Google Scholar 

  • Feechan, A., Kwon, E., Yun, B.-W., Wang, Y., Pallas, J. A., and Loake, G. J. 2005. A central role for S-nitrosothiols in plant disease resistance. Proc. Natl. Acad. Sci. U.S.A. 102:8054–8059.

    Article  PubMed  CAS  Google Scholar 

  • Flatley, J., Barrett, J., Pullan, S. T., Hughes, M. N., Green, J., and Poole, R. K. 2005. Transcriptional responses of Escherichia coli to S-nitrosoglutathione under defined chemostat conditions reveal major changes in methionine biosynthesis. J. Biol. Chem. 280:10065–10072.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, P. R. 2005. Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin, myoglobin and their associated reductases. J. Inorg. Biochem. 99:247–266.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, P. R., Gardner, A. M., Martin, L. A., and Salzman, A. L. 1998. Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. U.S.A. 95:10378–10383.

    Article  PubMed  CAS  Google Scholar 

  • Gilberthorpe, N. J., Lee, M. E., Stevanin, T. M., Read, R. C., and Poole, R. K. 2007. NsrR: a key regulator circumventing Salmonella enterica serovar Typhimurium oxidative and nitrosative stress in vitro and in IFN-gamma-stimulated J774.2 macrophages. Microbiology 153:1756–1771.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Urzua, E., Zamorano-Sanchez, D. S., Ponce-Coria, J., Morett, E., Grogan, S., Poole, R. K., and Membrillo-Hernandez, J. 2007. Multiple regulators of the Flavohaemoglobin (hmp) gene of Salmonella enterica serovar Typhimurium include RamA, a transcriptional regulator conferring the multidrug resistance phenotype. Arch. Microbiol. 187:67–77.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Urzua, E., Mills, C. E., White, G. P., Contreras-Zentella, M. L., Escamilla, E., Vasudevan, S. G., Membrillo-Hernandez, J., and Poole, R. K. 2003. Flavohemoglobin Hmp, but not its individual domains, confers protection from respiratory inhibition by nitric oxide in Escherichia coli. J. Biol. Chem. 278:34975–34982.

    Article  PubMed  CAS  Google Scholar 

  • Hess, D. T., Matsumoto, A., Kim, S.-O., Marshall, H. E., and Stamler, J. S. 2005. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell. Biol. 6:150–166.

    Article  PubMed  CAS  Google Scholar 

  • Hyduke, D. R., Jarboe, L. R., Tran, L. M., Chou, K. J. Y., and Liao, J. C. 2007. Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 104:8484–8489.

    Article  PubMed  CAS  Google Scholar 

  • Jakob, W., Webster, D. A., and Kroneck, P. M. H. 1992. NADH-dependent methemoglobin reductase from the obligate aerobe Vitreoscilla. Improved method of purification and reexamination of prosthetic groups. Arch. Biochem. Biophys. 292:29–33.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, A., Aslund, F., Pontis, E., Reichard, P., and Holmgren, A. 1997. Characterization of Escherichia coli NrdH-A glutaredoxin-like protein with a thioredoxin-like activity profile. J. Biol. Chem. 272:18044–18050.

    Article  PubMed  CAS  Google Scholar 

  • Justino, M. C., Vicente, J. B., Teixeira, M., and Saraiva, L. M. 2005. New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J. Biol. Chem. 280:2636–2643.

    Article  PubMed  CAS  Google Scholar 

  • Keilin, D. 1953. Haemoglobin in fungi. Occurrence of haemoglobin in yeast and the supposed stabilization of the oxygenated cytochrome oxidase. Nature 172:390–393.

    Article  PubMed  CAS  Google Scholar 

  • Keilin, D., and Ryley, J. F. 1953. Haemoglobin in protozoa. Nature 172:451.

    Article  PubMed  CAS  Google Scholar 

  • Keilin, D., and Tissieres, A. 1953. Haemoglobin in moulds: Neurospora crassa and Penicillium notatum. Nature 172:393–394.

    Article  PubMed  CAS  Google Scholar 

  • Khosla, C., and Bailey, J. E. 1989. Evidence for partial export of Vitreoscilla hemoglobin into the periplasmic space in Escherichia coli. Implications for protein function. J. Mol. Biol. 210:79–89.

    Article  PubMed  CAS  Google Scholar 

  • Lu, C. Y., Egawa, T., Wainwright, L. M., Poole, R. K., and Yeh, S.-R. 2007a. Structural and functional properties of a truncated hemoglobin from a food-borne pathogen Campylobacter jejuni. J. Biol. Chem. 282:13627–13636.

    Article  PubMed  CAS  Google Scholar 

  • Lu, C. Y., Mukai, M., Lin, Y., Wu, G. H., Poole, R. K., and Yeh, S. R. 2007b. Structural and functional properties of a single domain hemoglobin from the food-borne pathogen Campylobacter jejuni. J. Biol. Chem. 282:25917–25928.

    Article  PubMed  CAS  Google Scholar 

  • Membrillo-Hernandez, J., Ioannidis, N., and Poole, R. K. 1996. The flavohaemoglobin (HMP) of Escherichia coli generates superoxide in vitro and causes oxidative stress in vivo. FEBS Lett. 382:141–144.

    Article  PubMed  CAS  Google Scholar 

  • Membrillo-Hernández, J., Coopamah, M. D., Channa, A., Hughes, M. N., and Poole, R. K. 1998. A novel mechanism for upregulation of the Escherichia coli K-12 hmp (flavohaemoglobin) gene by the ‘NO releaser’, S-nitrosoglutathione: nitrosation of homocysteine and modulation of MetR binding to the glyA-hmp intergenic region. Mol. Microbiol. 29:1101–1112.

    Article  PubMed  Google Scholar 

  • Membrillo-Hernández, J., Coopamah, M. D., Anjum, M. F., Stevanin, T. M., Kelly, A., Hughes, M. N., and Poole, R. K. 1999. The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a “nitric oxide releaser,” and paraquat and is essential for transcriptional responses to oxidative stress. J. Biol. Chem. 274:748–754.

    Article  PubMed  Google Scholar 

  • Mukai, M., Mills, C. E., Poole, R. K., and Yeh, S. R. 2001. Flavohemoglobin, a globin with a peroxidase-like catalytic site. J. Biol. Chem. 276:7272–7277.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay, P., Zheng, M., Bedzyk, L. A., LaRossa, R. A., and Storz, G. 2004. Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc. Natl. Acad. Sci. U.S.A. 101:745–750.

    Article  PubMed  CAS  Google Scholar 

  • Mur, L. A. J., Carver, T. L. W., and Prats, E. 2006. NO way to live; the various roles of nitric oxide in plant-pathogen interactions. J. Exp. Bot. 57:489–505.

    Article  PubMed  CAS  Google Scholar 

  • Nardini, M., Pesce, A., Labarre, M., Richard, C., Bolli, A., Ascenzi, P., Guertin, M., and Bolognesi, M. 2006. Structural determinants in the group III truncated hemoglobin from Campylobacter jejuni. J. Biol. Chem. 281:37803–37812.

    Article  PubMed  CAS  Google Scholar 

  • Nunoshiba, T., DeRojas, T., Wishnok, J. S., Tannenbaum, S. R., and Demple, B. 1993. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc. Natl. Acad. Sci. U.S.A. 90:9993–9997.

    Article  PubMed  CAS  Google Scholar 

  • Orii, Y., Ioannidis, N., and Poole, R. K. 1992. The oxygenated flavohaemoglobin from Escherichia coli: Evidence from photodissociation and rapid-scan studies for two kinetic and spectral forms. Biochem. Biophys. Res. Commun. 187:94–100.

    Article  PubMed  CAS  Google Scholar 

  • Ouellet, H., Juszczak, L., Dantsker, D., Samuni, U., Ouellet, Y. H., Savard, P. Y., Wittenberg, J. B., Wittenberg, B. A., Friedman, J. M., and Guertin, M. 2003. Reactions of Mycobacterium tuberculosis truncated hemoglobin O with ligands reveal a novel lig-and-inclusive hydrogen bond network. Biochemistry 42:5764–5774.

    Article  PubMed  CAS  Google Scholar 

  • Ouellett, H., Ouellett, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., and Guertin, M. 2002. Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc. Natl. Acad. Sci. U.S.A. 99:5902–5907.

    Article  Google Scholar 

  • Park, K. W., Kim, K. J., Howard, A. J., Stark, B. C., and Webster, D. A. 2002. Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. J. Biol. Chem. 277:33334–33337.

    Article  PubMed  CAS  Google Scholar 

  • Parkhill, J., Wren, B. W., Mungall, K., Ketley, J. M., Churcher, C., Basham, D., Chillingworth, T., Davies, R. M., Feltwell, T., Holroyd, S., Jagels, K., Karlyshev, A. V., Moule, S., Pallen, M. J., Penn, C. W., Quail, M. A., Rajandream, M. A., Rutherford, K. M., vanVliet, A. H. M., Whitehead, S., and Barrell, B. G. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668.

    Article  PubMed  CAS  Google Scholar 

  • Pittman, M. S., Elvers, K. T., Lee, L., Jones, M. A., Poole, R. K., Park, S. F., and Kelly, D. J. 2007. Growth of Campylobacter jejuni on nitrate and nitrite: electron transport to NapA and NrfA via NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative stress. Mol. Microbiol. 63:575–590.

    Article  PubMed  CAS  Google Scholar 

  • Poole, R. K. 2005. Nitric oxide and nitrosative stress tolerance in bacteria. Biochem. Soc. Trans. 33:176–180.

    Article  PubMed  CAS  Google Scholar 

  • Poole, R. K., and Hughes, M. N. 2000. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. 36:775–783.

    Article  PubMed  CAS  Google Scholar 

  • Poole, R. K., Anjum, M. F., Membrillo-Hernández, J., Kim, S. O., Hughes, M. N., and Stewart, V. 1996. Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J Bacteriol. 178:5487–5492.

    PubMed  CAS  Google Scholar 

  • Poole, R. K., Ioannidis, N., and Orii, Y. 1994. Reactions of the Escherichia coli flavohaemoglobin (Hmp) with oxygen and reduced nicotinamide adenine dinucleotide: evidence for oxygen switching of flavin oxidoreduction and a mechanism for oxygen sensing. Proc. R. Soc. Lond. Series B Biol. Sci. 255:251–258.

    Article  CAS  Google Scholar 

  • Pullan, S. T., Gidley, M. D., Jones, R. A., Barrett, J., Stevanin, T. A., Read, R. C., Green, J., and Poole, R. K. 2007. Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S-nitrosation. J. Bacteriol. 189:1845–1855.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, K. Y., Erdjument-Bromage, H., Tempst, P., and Nathan, C. F. 2005. S-nitroso proteome of Mycobacterium tuberculosis: enzymes of intermediary metabolism and antioxidant defense. Proc. Natl. Acad. Sci. U.S.A. 102:467–472.

    Article  PubMed  CAS  Google Scholar 

  • Roos, V., and Klemm, P. 2006. Global gene expression profiling of the asymptomatic bacteriuria Escherichia coli strain 83972 in the human urinary tract. Infect. Immun. 74:3565–3575.

    Article  PubMed  CAS  Google Scholar 

  • Schonzeler, H. H. 1978. Bruckner. London, Boston: Marion Boyars Publishers Ltd.

    Google Scholar 

  • Schroder, H. 2006. No nitric oxide for HO-1 from sodium nitroprusside. Mol. Pharmacol. 69:1507–1509.

    Article  PubMed  Google Scholar 

  • Sebbane, F., Lemaitre, N., Sturdevant, D. E., Rebeil, R., Virtaneva, K., Porcella, S. F., and Hinnebusch, B. J. 2006. Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. Proc. Natl. Acad. Sci. U.S.A. 103:11766–11771.

    Article  PubMed  CAS  Google Scholar 

  • Shiloh, M. U., and Nathan, C. F. 2000. Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria. Curr. Opin. Microbiol. 3:35–42.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, J. A., Haugen, B. J., Buckles, E. L., Lockatell, C. V., Johnson, D. E., Donnenberg, M. S., Welch, R. A., and Mobley, H. L. T. 2004. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun. 72:6373–6381.

    Article  PubMed  CAS  Google Scholar 

  • Spiro, S. 2006. Nitric oxide-sensing mechanisms in Escherichia coli. Biochem. Soc. Trans. 34:200–202.

    Article  PubMed  CAS  Google Scholar 

  • Spiro, S. 2007. Regulators of bacterial responses to nitric oxide. FEMS Microbiol. Rev. 31:193–211.

    Article  PubMed  CAS  Google Scholar 

  • Stamler, J.S. 2003. Hemoglobin and nitric oxide. N. Engl. J. Med. 349:402.

    Article  PubMed  Google Scholar 

  • Stevanin, T. M., Ioannidis, N., Mills, C. E., Kim, S. O., Hughes, M. N., and Poole, R. K. 2000. Flavohemoglobin Hmp affords inducible protection for Escherichia coli respiration, catalyzed by cytochromes bo’ or bd, from nitric oxide. J. Biol. Chem. 275:35868–35875.

    Article  PubMed  CAS  Google Scholar 

  • Stevanin, T. M., Poole, R. K., Demoncheaux, E. A. G., and Read, R. C. 2002. Flavohemoglobin Hmp protects Salmonella enterica serovar Typhimurium from nitric oxide-related killing by human macrophages. Infect Immun. 70:4399–4405.

    Article  PubMed  CAS  Google Scholar 

  • Stevanin, T. A., Read, R. C., and Poole, R. K. 2007. The hmp gene encoding the NO-inducible flavohaemoglobin in Escherichia coli confers a protective advantage in resisting killing within macrophages, but not in vitro: links with swarming motility. Gene 398:62–68.

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan, S. G., Tang, P., Dixon, N. E., and Poole, R. K. 1995. Distribution of the flavohaemoglobin, HMP, between periplasm and cytoplasm in Escherichia coli. FEMS Microbiol. Lett. 125:219–224.

    Article  PubMed  CAS  Google Scholar 

  • Wainwright, L. M., Elvers, K. T., Park, S. F., and Poole, R. K. 2005. A truncated haemoglobin implicated in oxygen metabolism by the microaerophilic food-borne pathogen Campylobacter jejuni. Microbiology 151:4079–4091.

    Article  PubMed  CAS  Google Scholar 

  • Wainwright, L. M., Wang, Y. H., Park, S. F., Yeh, S. R., and Poole, R. K. 2006. Purification and spectroscopic characterization of ctb, a group III truncated hemoglobin implicated in oxygen metabolism in the food-borne pathogen Campylobacter jejuni. Biochemistry. 45:6003–6011.

    Article  PubMed  CAS  Google Scholar 

  • Wittenberg, J. B., and Wittenberg, B. A. 1990. Mechanisms of cytoplasmic hemoglobin and myoglobin function. Annu. Rev. Biophys. Biophys. Chem. 19:217–241.

    Article  PubMed  CAS  Google Scholar 

  • Wittenberg, J. B., Bolognesi, M., Wittenberg, B. A., and Guertin, M. 2002. Truncated hemoglobins: A new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J. Biol. Chem. 277:871–874.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G., Corker, H., Orii, Y., and Poole, R. K. 2004. Escherichia coli Hmp, an “oxygenbinding flavohaemoprotein”, produces superoxide anion and self-destructs. Arch. Microbiol. 182:193–203.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G., Wainwright, L. M., and Poole, R. K. 2003. Microbial globins. Adv. Microb. Physiol. 47:255–310

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Italia

About this chapter

Cite this chapter

Poole, R.K. (2008). Microbial Haemoglobins: Proteins at the Crossroads of Oxygen and Nitric Oxide Metabolism. In: Bolognesi, M., di Prisco, G., Verde, C. (eds) Dioxygen Binding and Sensing Proteins. Protein Reviews, vol 9. Springer, Milano. https://doi.org/10.1007/978-88-470-0807-6_20

Download citation

Publish with us

Policies and ethics