Microbial Haemoglobins: Proteins at the Crossroads of Oxygen and Nitric Oxide Metabolism

  • Robert K. Poole
Part of the Protein Reviews book series (PRON, volume 9)


The globins of microorganisms were ignored for many decades after their discovery by Warburg in the 1930s and rediscovery by Keilin in the 1950s. Three classes of microbial globin are now recognised, all having features of the classical globin protein fold. The first is typified by the myoglobin-like protein, Vgb, from the bacterium Vitreoscilla, and by the Cgb protein of Campylobacter jejuni. Second, the truncated globins, widely distributed in bacteria, microbial eukaryotes and plants, are characterised by a two-over-two helical structure while retaining the essential features of the globin superfamily. The third and best understood class are the flavohaemoglobins, possessing an additional domain with binding sites for FAD and NAD(P)H. Flavohaemoglobins have no known physiological role in oxygen metabolism but undoubtedly confer protection from NO, as do some, but not all, of the myoglobin-like and truncated microbial globins. This chapter honours the contributions of Beatrice and Jonathan Wittenberg to globin research, specifically their work on bacterial truncated globins and their thoughtful consideration of the role of the bacterial myoglobin-like proteins. The focus of the chapter is on recent and current work from the Poole laboratory, with reference to earlier studies by the Wittenbergs. We have investigated all three classes of bacterial globins and used physiological and genetic methods to yield insights into globin function and reveal new roles for these old proteins in pathogenicity.


Nitric Oxide Nitric Oxide Reactive Nitrogen Species Nitrosative Stress Yersinia Pestis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angelo, M., Singel, D. J., and Stamler, J. S. 2006. An S-nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate. Proc. Natl. Acad. Sci. U.S.A. 103:8366–8371.PubMedCrossRefGoogle Scholar
  2. Bang, I. S., Liu, L. M., Vazquez-Torres, A., Crouch, M. L., Stamler, J. S., and Fang, F. C. 2006. Maintenance of nitric oxide and redox homeostasis by the Salmonella flavohemoglobin Hmp. J. Biol. Chem. 281:28039–28047.PubMedCrossRefGoogle Scholar
  3. Boccara, M., Mills, C. E., Zeier, J., Anzi, C., Lamb, C., Poole, R. K., and Delledonne, M. 2005. Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects the plant hypersensitive reaction by intercepting nitric oxide produced by the host. Plant J. 43:226–237.PubMedCrossRefGoogle Scholar
  4. Bodenmiller, D. M., and Spiro, S. 2006. The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J. Bacteriol. 188:874–881.PubMedCrossRefGoogle Scholar
  5. Borutaite, V., Morkuniene, R., and Brown, G. C. 2000. Nitric oxide donors, nitrosothiols and mitochondrial respiration inhibitors induce caspase activation by different mechanisms. FEBS Lett. 467:155–159.PubMedCrossRefGoogle Scholar
  6. Couture, M., Das, T. K., Lee, H. C., Peisach, J., Rousseau, D. L., Wittenberg, B. A., Wittenberg, J. B., and Guertin, M. 1999. Chlamydomonas chloroplast ferrous hemoglobin-Heme pocket structure and reactions with ligands. J. Biol. Chem. 274:6898–6910.PubMedCrossRefGoogle Scholar
  7. Couture, M., Das, T. K., Savard, P. Y., Ouellet, Y., Wittenberg, J. B., Wittenberg, B. A., Rousseau, D. L., and Guertin, M. 2000. Structural investigations of the hemoglobin of the cyanobacterium Synechocystis PCC6803 reveal a unique distal heme pocket. Eur. J. Biochem. 267:4770–4780.PubMedCrossRefGoogle Scholar
  8. Cruz-Ramos, H., Crack, J., Wu, G., Hughes, M. N., Scott, C, Thomson, A. J., Green, J., and Poole, R. K. 2002. NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J. 21:3235–3244.PubMedCrossRefGoogle Scholar
  9. Dantsker, D., Samuni, U., Ouellet, Y., Wittenberg, B. A., Wittenberg, J. B., Milani, M., Bolognesi, M., Guertin, M., and Friedman, J. M. 2004. Viscosity-dependent relaxation significantly modulates the kinetics of CO recombination in the truncated hemoglobin TrHbN from Mycobacterium tuberculosis. J. Biol. Chem. 279:38844–38853.PubMedCrossRefGoogle Scholar
  10. Das, T. K., Couture, M., Lee, H. C, Peisach, J., Rousseau, D. L., Wittenberg, B. A., Wittenberg, J. B., and Guertin, M. 1999. Identification of the ligands to the ferric heme of Chlamydomonas chloroplast hemoglobin: Evidence for ligation of tyrosine-63 (B10) to the heme. Biochemistry 38:15360–15368.PubMedCrossRefGoogle Scholar
  11. Das, T. K., Weber, R. E., Dewilde, S., Wittenberg, J. B., Wittenberg, B. A., Yamauchi, K., VanHauwaert, M. L., Moens, L., and Rousseau, D. L. 2000. Ligand binding in the ferric and ferrous states of Paramecium hemoglobin. Biochemistry 39:14330–14340.PubMedCrossRefGoogle Scholar
  12. D’Autreaux, B., Touati, D., Bersch, B., Latour, J. M., and Michaud-Soret, I. 2002. Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proc. Natl. Acad. Sci. U.S.A. 99:16619–16624.PubMedCrossRefGoogle Scholar
  13. Dikshit, R. P., Dikshit, K. L., Liu, Y. X., and Webster, D. A. 1992. The bacterial hemoglobin from Vitreoscilla can support the aerobic growth of Escherichia coli lacking terminal oxidases. Arch. Biochem. Biophys. 293:241–245.PubMedCrossRefGoogle Scholar
  14. Elvers, K. T., Wu, G., Gilberthorpe, N. J., Poole, R. K., and Park, S. F. 2004. Role of an inducible single-domain hemoglobin in mediating resistance to nitric oxide and nitrosative stress in Campylobacter jejuni and Campylobacter coli. J. Bacteriol. 186:5332–5341.PubMedCrossRefGoogle Scholar
  15. Elvers, K. T., Turner, S. M., Wainwright, L. M., Marsden, G., Hinds, J., Cole, J. A., Poole, R. K., Penn, C. W., and Park, S. F. 2005. NssR, a member of the Crp-Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin. Mol. Microbiol. 57:735–750.PubMedCrossRefGoogle Scholar
  16. Feechan, A., Kwon, E., Yun, B.-W., Wang, Y., Pallas, J. A., and Loake, G. J. 2005. A central role for S-nitrosothiols in plant disease resistance. Proc. Natl. Acad. Sci. U.S.A. 102:8054–8059.PubMedCrossRefGoogle Scholar
  17. Flatley, J., Barrett, J., Pullan, S. T., Hughes, M. N., Green, J., and Poole, R. K. 2005. Transcriptional responses of Escherichia coli to S-nitrosoglutathione under defined chemostat conditions reveal major changes in methionine biosynthesis. J. Biol. Chem. 280:10065–10072.PubMedCrossRefGoogle Scholar
  18. Gardner, P. R. 2005. Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin, myoglobin and their associated reductases. J. Inorg. Biochem. 99:247–266.PubMedCrossRefGoogle Scholar
  19. Gardner, P. R., Gardner, A. M., Martin, L. A., and Salzman, A. L. 1998. Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. U.S.A. 95:10378–10383.PubMedCrossRefGoogle Scholar
  20. Gilberthorpe, N. J., Lee, M. E., Stevanin, T. M., Read, R. C., and Poole, R. K. 2007. NsrR: a key regulator circumventing Salmonella enterica serovar Typhimurium oxidative and nitrosative stress in vitro and in IFN-gamma-stimulated J774.2 macrophages. Microbiology 153:1756–1771.PubMedCrossRefGoogle Scholar
  21. Hernandez-Urzua, E., Zamorano-Sanchez, D. S., Ponce-Coria, J., Morett, E., Grogan, S., Poole, R. K., and Membrillo-Hernandez, J. 2007. Multiple regulators of the Flavohaemoglobin (hmp) gene of Salmonella enterica serovar Typhimurium include RamA, a transcriptional regulator conferring the multidrug resistance phenotype. Arch. Microbiol. 187:67–77.PubMedCrossRefGoogle Scholar
  22. Hernandez-Urzua, E., Mills, C. E., White, G. P., Contreras-Zentella, M. L., Escamilla, E., Vasudevan, S. G., Membrillo-Hernandez, J., and Poole, R. K. 2003. Flavohemoglobin Hmp, but not its individual domains, confers protection from respiratory inhibition by nitric oxide in Escherichia coli. J. Biol. Chem. 278:34975–34982.PubMedCrossRefGoogle Scholar
  23. Hess, D. T., Matsumoto, A., Kim, S.-O., Marshall, H. E., and Stamler, J. S. 2005. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell. Biol. 6:150–166.PubMedCrossRefGoogle Scholar
  24. Hyduke, D. R., Jarboe, L. R., Tran, L. M., Chou, K. J. Y., and Liao, J. C. 2007. Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 104:8484–8489.PubMedCrossRefGoogle Scholar
  25. Jakob, W., Webster, D. A., and Kroneck, P. M. H. 1992. NADH-dependent methemoglobin reductase from the obligate aerobe Vitreoscilla. Improved method of purification and reexamination of prosthetic groups. Arch. Biochem. Biophys. 292:29–33.PubMedCrossRefGoogle Scholar
  26. Jordan, A., Aslund, F., Pontis, E., Reichard, P., and Holmgren, A. 1997. Characterization of Escherichia coli NrdH-A glutaredoxin-like protein with a thioredoxin-like activity profile. J. Biol. Chem. 272:18044–18050.PubMedCrossRefGoogle Scholar
  27. Justino, M. C., Vicente, J. B., Teixeira, M., and Saraiva, L. M. 2005. New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J. Biol. Chem. 280:2636–2643.PubMedCrossRefGoogle Scholar
  28. Keilin, D. 1953. Haemoglobin in fungi. Occurrence of haemoglobin in yeast and the supposed stabilization of the oxygenated cytochrome oxidase. Nature 172:390–393.PubMedCrossRefGoogle Scholar
  29. Keilin, D., and Ryley, J. F. 1953. Haemoglobin in protozoa. Nature 172:451.PubMedCrossRefGoogle Scholar
  30. Keilin, D., and Tissieres, A. 1953. Haemoglobin in moulds: Neurospora crassa and Penicillium notatum. Nature 172:393–394.PubMedCrossRefGoogle Scholar
  31. Khosla, C., and Bailey, J. E. 1989. Evidence for partial export of Vitreoscilla hemoglobin into the periplasmic space in Escherichia coli. Implications for protein function. J. Mol. Biol. 210:79–89.PubMedCrossRefGoogle Scholar
  32. Lu, C. Y., Egawa, T., Wainwright, L. M., Poole, R. K., and Yeh, S.-R. 2007a. Structural and functional properties of a truncated hemoglobin from a food-borne pathogen Campylobacter jejuni. J. Biol. Chem. 282:13627–13636.PubMedCrossRefGoogle Scholar
  33. Lu, C. Y., Mukai, M., Lin, Y., Wu, G. H., Poole, R. K., and Yeh, S. R. 2007b. Structural and functional properties of a single domain hemoglobin from the food-borne pathogen Campylobacter jejuni. J. Biol. Chem. 282:25917–25928.PubMedCrossRefGoogle Scholar
  34. Membrillo-Hernandez, J., Ioannidis, N., and Poole, R. K. 1996. The flavohaemoglobin (HMP) of Escherichia coli generates superoxide in vitro and causes oxidative stress in vivo. FEBS Lett. 382:141–144.PubMedCrossRefGoogle Scholar
  35. Membrillo-Hernández, J., Coopamah, M. D., Channa, A., Hughes, M. N., and Poole, R. K. 1998. A novel mechanism for upregulation of the Escherichia coli K-12 hmp (flavohaemoglobin) gene by the ‘NO releaser’, S-nitrosoglutathione: nitrosation of homocysteine and modulation of MetR binding to the glyA-hmp intergenic region. Mol. Microbiol. 29:1101–1112.PubMedCrossRefGoogle Scholar
  36. Membrillo-Hernández, J., Coopamah, M. D., Anjum, M. F., Stevanin, T. M., Kelly, A., Hughes, M. N., and Poole, R. K. 1999. The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a “nitric oxide releaser,” and paraquat and is essential for transcriptional responses to oxidative stress. J. Biol. Chem. 274:748–754.PubMedCrossRefGoogle Scholar
  37. Mukai, M., Mills, C. E., Poole, R. K., and Yeh, S. R. 2001. Flavohemoglobin, a globin with a peroxidase-like catalytic site. J. Biol. Chem. 276:7272–7277.PubMedCrossRefGoogle Scholar
  38. Mukhopadhyay, P., Zheng, M., Bedzyk, L. A., LaRossa, R. A., and Storz, G. 2004. Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc. Natl. Acad. Sci. U.S.A. 101:745–750.PubMedCrossRefGoogle Scholar
  39. Mur, L. A. J., Carver, T. L. W., and Prats, E. 2006. NO way to live; the various roles of nitric oxide in plant-pathogen interactions. J. Exp. Bot. 57:489–505.PubMedCrossRefGoogle Scholar
  40. Nardini, M., Pesce, A., Labarre, M., Richard, C., Bolli, A., Ascenzi, P., Guertin, M., and Bolognesi, M. 2006. Structural determinants in the group III truncated hemoglobin from Campylobacter jejuni. J. Biol. Chem. 281:37803–37812.PubMedCrossRefGoogle Scholar
  41. Nunoshiba, T., DeRojas, T., Wishnok, J. S., Tannenbaum, S. R., and Demple, B. 1993. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc. Natl. Acad. Sci. U.S.A. 90:9993–9997.PubMedCrossRefGoogle Scholar
  42. Orii, Y., Ioannidis, N., and Poole, R. K. 1992. The oxygenated flavohaemoglobin from Escherichia coli: Evidence from photodissociation and rapid-scan studies for two kinetic and spectral forms. Biochem. Biophys. Res. Commun. 187:94–100.PubMedCrossRefGoogle Scholar
  43. Ouellet, H., Juszczak, L., Dantsker, D., Samuni, U., Ouellet, Y. H., Savard, P. Y., Wittenberg, J. B., Wittenberg, B. A., Friedman, J. M., and Guertin, M. 2003. Reactions of Mycobacterium tuberculosis truncated hemoglobin O with ligands reveal a novel lig-and-inclusive hydrogen bond network. Biochemistry 42:5764–5774.PubMedCrossRefGoogle Scholar
  44. Ouellett, H., Ouellett, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., and Guertin, M. 2002. Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc. Natl. Acad. Sci. U.S.A. 99:5902–5907.CrossRefGoogle Scholar
  45. Park, K. W., Kim, K. J., Howard, A. J., Stark, B. C., and Webster, D. A. 2002. Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. J. Biol. Chem. 277:33334–33337.PubMedCrossRefGoogle Scholar
  46. Parkhill, J., Wren, B. W., Mungall, K., Ketley, J. M., Churcher, C., Basham, D., Chillingworth, T., Davies, R. M., Feltwell, T., Holroyd, S., Jagels, K., Karlyshev, A. V., Moule, S., Pallen, M. J., Penn, C. W., Quail, M. A., Rajandream, M. A., Rutherford, K. M., vanVliet, A. H. M., Whitehead, S., and Barrell, B. G. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668.PubMedCrossRefGoogle Scholar
  47. Pittman, M. S., Elvers, K. T., Lee, L., Jones, M. A., Poole, R. K., Park, S. F., and Kelly, D. J. 2007. Growth of Campylobacter jejuni on nitrate and nitrite: electron transport to NapA and NrfA via NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative stress. Mol. Microbiol. 63:575–590.PubMedCrossRefGoogle Scholar
  48. Poole, R. K. 2005. Nitric oxide and nitrosative stress tolerance in bacteria. Biochem. Soc. Trans. 33:176–180.PubMedCrossRefGoogle Scholar
  49. Poole, R. K., and Hughes, M. N. 2000. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. 36:775–783.PubMedCrossRefGoogle Scholar
  50. Poole, R. K., Anjum, M. F., Membrillo-Hernández, J., Kim, S. O., Hughes, M. N., and Stewart, V. 1996. Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J Bacteriol. 178:5487–5492.PubMedGoogle Scholar
  51. Poole, R. K., Ioannidis, N., and Orii, Y. 1994. Reactions of the Escherichia coli flavohaemoglobin (Hmp) with oxygen and reduced nicotinamide adenine dinucleotide: evidence for oxygen switching of flavin oxidoreduction and a mechanism for oxygen sensing. Proc. R. Soc. Lond. Series B Biol. Sci. 255:251–258.CrossRefGoogle Scholar
  52. Pullan, S. T., Gidley, M. D., Jones, R. A., Barrett, J., Stevanin, T. A., Read, R. C., Green, J., and Poole, R. K. 2007. Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S-nitrosation. J. Bacteriol. 189:1845–1855.PubMedCrossRefGoogle Scholar
  53. Rhee, K. Y., Erdjument-Bromage, H., Tempst, P., and Nathan, C. F. 2005. S-nitroso proteome of Mycobacterium tuberculosis: enzymes of intermediary metabolism and antioxidant defense. Proc. Natl. Acad. Sci. U.S.A. 102:467–472.PubMedCrossRefGoogle Scholar
  54. Roos, V., and Klemm, P. 2006. Global gene expression profiling of the asymptomatic bacteriuria Escherichia coli strain 83972 in the human urinary tract. Infect. Immun. 74:3565–3575.PubMedCrossRefGoogle Scholar
  55. Schonzeler, H. H. 1978. Bruckner. London, Boston: Marion Boyars Publishers Ltd.Google Scholar
  56. Schroder, H. 2006. No nitric oxide for HO-1 from sodium nitroprusside. Mol. Pharmacol. 69:1507–1509.PubMedCrossRefGoogle Scholar
  57. Sebbane, F., Lemaitre, N., Sturdevant, D. E., Rebeil, R., Virtaneva, K., Porcella, S. F., and Hinnebusch, B. J. 2006. Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. Proc. Natl. Acad. Sci. U.S.A. 103:11766–11771.PubMedCrossRefGoogle Scholar
  58. Shiloh, M. U., and Nathan, C. F. 2000. Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria. Curr. Opin. Microbiol. 3:35–42.PubMedCrossRefGoogle Scholar
  59. Snyder, J. A., Haugen, B. J., Buckles, E. L., Lockatell, C. V., Johnson, D. E., Donnenberg, M. S., Welch, R. A., and Mobley, H. L. T. 2004. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun. 72:6373–6381.PubMedCrossRefGoogle Scholar
  60. Spiro, S. 2006. Nitric oxide-sensing mechanisms in Escherichia coli. Biochem. Soc. Trans. 34:200–202.PubMedCrossRefGoogle Scholar
  61. Spiro, S. 2007. Regulators of bacterial responses to nitric oxide. FEMS Microbiol. Rev. 31:193–211.PubMedCrossRefGoogle Scholar
  62. Stamler, J.S. 2003. Hemoglobin and nitric oxide. N. Engl. J. Med. 349:402.PubMedCrossRefGoogle Scholar
  63. Stevanin, T. M., Ioannidis, N., Mills, C. E., Kim, S. O., Hughes, M. N., and Poole, R. K. 2000. Flavohemoglobin Hmp affords inducible protection for Escherichia coli respiration, catalyzed by cytochromes bo’ or bd, from nitric oxide. J. Biol. Chem. 275:35868–35875.PubMedCrossRefGoogle Scholar
  64. Stevanin, T. M., Poole, R. K., Demoncheaux, E. A. G., and Read, R. C. 2002. Flavohemoglobin Hmp protects Salmonella enterica serovar Typhimurium from nitric oxide-related killing by human macrophages. Infect Immun. 70:4399–4405.PubMedCrossRefGoogle Scholar
  65. Stevanin, T. A., Read, R. C., and Poole, R. K. 2007. The hmp gene encoding the NO-inducible flavohaemoglobin in Escherichia coli confers a protective advantage in resisting killing within macrophages, but not in vitro: links with swarming motility. Gene 398:62–68.PubMedCrossRefGoogle Scholar
  66. Vasudevan, S. G., Tang, P., Dixon, N. E., and Poole, R. K. 1995. Distribution of the flavohaemoglobin, HMP, between periplasm and cytoplasm in Escherichia coli. FEMS Microbiol. Lett. 125:219–224.PubMedCrossRefGoogle Scholar
  67. Wainwright, L. M., Elvers, K. T., Park, S. F., and Poole, R. K. 2005. A truncated haemoglobin implicated in oxygen metabolism by the microaerophilic food-borne pathogen Campylobacter jejuni. Microbiology 151:4079–4091.PubMedCrossRefGoogle Scholar
  68. Wainwright, L. M., Wang, Y. H., Park, S. F., Yeh, S. R., and Poole, R. K. 2006. Purification and spectroscopic characterization of ctb, a group III truncated hemoglobin implicated in oxygen metabolism in the food-borne pathogen Campylobacter jejuni. Biochemistry. 45:6003–6011.PubMedCrossRefGoogle Scholar
  69. Wittenberg, J. B., and Wittenberg, B. A. 1990. Mechanisms of cytoplasmic hemoglobin and myoglobin function. Annu. Rev. Biophys. Biophys. Chem. 19:217–241.PubMedCrossRefGoogle Scholar
  70. Wittenberg, J. B., Bolognesi, M., Wittenberg, B. A., and Guertin, M. 2002. Truncated hemoglobins: A new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J. Biol. Chem. 277:871–874.PubMedCrossRefGoogle Scholar
  71. Wu, G., Corker, H., Orii, Y., and Poole, R. K. 2004. Escherichia coli Hmp, an “oxygenbinding flavohaemoprotein”, produces superoxide anion and self-destructs. Arch. Microbiol. 182:193–203.PubMedCrossRefGoogle Scholar
  72. Wu, G., Wainwright, L. M., and Poole, R. K. 2003. Microbial globins. Adv. Microb. Physiol. 47:255–310PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Robert K. Poole
    • 1
  1. 1.Department of Molecular Biology and BiotechnologyThe University of SheffieldSheffieldUK

Personalised recommendations