Skip to main content

Ever Surprising Nematode Globins

  • Chapter
Dioxygen Binding and Sensing Proteins

Part of the book series: Protein Reviews ((PRON,volume 9))

  • 363 Accesses

Abstract

Nematodes express pseudocoelomic, body wall and cuticle globin isoforms. All globin isoforms display the major determinants of the globin fold and a B10Tyr/E7Gln residue pair, which is a signature of high oxygen affinity. The hitherto studied pseudocoelomic globins are octamers of covalently linked didomain globin chains. Body wall globins so far are monomeric, whereas cuticle globins are tetrameric. The extremely high oxygen affinity of the pseudocoelomic globins is caused by a network of three H-bonds between the bound ligand, B10Tyr and E7Gln resulting in a very low dissociation rate. The body wall and cuticle globins, albeit also displaying B10Tyr and E7Gln, have more moderate oxygen affinities. The structural reason for the latter observation is unknown. Although many hypotheses have been put forward, the real function of the nematode globins remains illusive.

Caenorhabditis elegans expresses 33 globin-like proteins. They display the major determinants of the globin fold and are expressed at very low levels. Most of them have N- and C-terminal extensions as well as interhelical insertions of variable length. Orthologues of these globins have been identified in closely related species and also in other nematode taxa.

Introns inserted at B12.2 and G7.0 are common in nematode globin genes and the E-helix is also interrupted by an intron, however at more variable positions. The globins of C. elegans are unique in having more introns that seem to be inserted rather randomly. Thus the intron insertion pattern of the nematode globin introns substantially deviates from the conserved intron/exon pattern seen in vertebrates.

Phylogenetic analysis of all nematode globin sequences reveals two strictly separated clades, one comprises all C. elegans globins except ZK637.13 and the other groups ZK637.13 and all other nematode globins. This might suggest that the globins in both clades have acquired different functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blaxter, M. 1993. Nemoglobins: Divergent nematode globins. Parasitol. Today 9:353–360.

    Article  PubMed  CAS  Google Scholar 

  • Blaxter, M. L., Ingram, L., and Tweedie, S. 1994. Sequence, expression and evolution of the globins of the parasitic nematode Nippostrongylus brasiliensis. Mol. Biochem. Parasitol. 68:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Brunori, M. 2001. Nitric oxide moves myoglobin centre stage. Trends Biochem. Sci. 26:209–210.

    Article  PubMed  CAS  Google Scholar 

  • Burmester, T., Ebner, B., Weich, B., and Hankeln, T. 2002. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol. Biol. Evol. 19:416–421.

    PubMed  CAS  Google Scholar 

  • Burmester, T., Weich, B., Reinhardt, S., and Hankeln, T. 2000. A vertebrate globin expressed in the brain. Nature 407:520–523.

    Article  PubMed  CAS  Google Scholar 

  • Burr, A. H., and Harosi, F. I. 1985. Naturally crystalline hemoglobin of the nematode Mermis nigrescens. An in situ microspectrophotometric study of chemical properties and dichroism. Biophys. J. 47:527–536.

    Article  PubMed  CAS  Google Scholar 

  • Burr, A. H., Hunt, P., Wagar, D. R., Dewilde, S., Blaxter, M. L., Vanfleteren, J. R., and Moens, L. 2000. A hemoglobin with an optical function. J. Biol. Chem. 275:4810–4815.

    Article  PubMed  CAS  Google Scholar 

  • Burr, A. H., Schiefke, R., and Bollerup, G. 1975. Properties of a hemoglobin from the chromatrope of the nematode Mermis nigrescens. Biochim. Biophys. Acta 405:404–411.

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T. 1985. Selfish DNA and the origin of introns. Nature 315:283–284.

    Article  PubMed  CAS  Google Scholar 

  • Coletta, M., Ascenzi, P., and Brunori, M. 1988. Kinetic evidence for a role of heme geometry on the modulation of carbon monoxide reactivity in human hemoglobin. J. Biol. Chem. 263:18286–18289.

    PubMed  CAS  Google Scholar 

  • Darawshe, S., and Daniel, E. 1991. Molecular symmetry and arrangement of subunits in extracellular hemoglobin from the nematode Ascaris suum. Eur. J. Biochem. 201:169–173.

    Article  PubMed  CAS  Google Scholar 

  • Darawshe, S., Tsafadyah, Y., and Daniel, E. 1987. Quaternary structure of erythrocruorin from the nematode Ascaris suum. Evidence for unsaturated haem-binding sites. Biochem. J. 242:689–694.

    PubMed  CAS  Google Scholar 

  • Das, T. K., Samuni, U., Lin, Y., Goldberg, D. E., Rousseau, D. L., and Friedman, J. M. 2004. Distal heme pocket conformers of carbonmonoxy derivatives of Ascaris hemoglobin: evidence of conformational trapping in porous sol-gel matrices. J. Biol. Chem. 279:10433–10441.

    Article  PubMed  CAS  Google Scholar 

  • Davenport, H. E. 1949. Hemoglobins of Ascaris lumbricoides. Proc. R. Soc. Lond. Biol. Sci. 136:255–270.

    CAS  Google Scholar 

  • De Baere, I., Liu, L., Moens, L., Van Beeumen, J., Gielens, C., Richelle, J., Trotman, C., Finch, J., Gerstein, M., and Perutz, M. 1992. Polar zipper sequence in the high-affinity hemoglobin of Ascaris suum: amino acid sequence and structural interpretation. Proc. Natl. Acad. Sci. U.S.A. 89:4638–4642.

    Article  PubMed  Google Scholar 

  • De Baere, I., Perutz, M. F., Kiger, L., Marden, M. C., and Poyart, C. 1994. Formation of two hydrogen bonds from the globin to the heme-linked oxygen molecule in Ascaris hemoglobin. Proc. Natl. Acad. Sci. U.S.A. 91:1594–1597.

    Article  PubMed  Google Scholar 

  • Dewilde, S., Blaxter, M., Van Hauwaert, M. L., Van Houte, K., Pesce, A., Griffon, N., Kiger, L., Marden, M. C., Vermeire, S., Vanfleteren, J., Esmans, E., and Moens, L. 1998. Structural, functional, and genetic characterization of Gastrophilus hemoglobin. J. Biol. Chem. 273:32467–32474.

    Article  PubMed  CAS  Google Scholar 

  • Dewilde, S., Kiger, L., Burmester, T., Hankeln, T., Baudin-Creuza, V., Aerts, T., Marden, M.C., Caubergs, R., and Moens, L. 2001. Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J. Biol. Chem. 276:38949–38955.

    Article  PubMed  CAS  Google Scholar 

  • Dickerson, R. E., and Geis, I. (1983) Hemoglobin, 1st edn. Amsterdam: Benjamin/Cummings Inc.

    Google Scholar 

  • Dixon, B., Walker, B., Kimmins, W., and Pohajdak, B. 1991. Isolation and sequencing of a cDNA for an unusual hemoglobin from the parasitic nematode Pseudoterranova decipiens. Proc. Natl. Acad. Sci. U.S.A. 88:5655–5659.

    Article  PubMed  CAS  Google Scholar 

  • Draghi, F., Miele, A. E., Travaglini-Allocatelli, C., Vallone, B., Brunori, M., Gibson, Q. H., and Olson, J. S. 2002. Controlling ligand binding in myoglobin by mutagenesis. J. Biol. Chem. 277:7509–7519.

    Article  PubMed  CAS  Google Scholar 

  • Fago, A., Hundahl, C., Dewilde, S., Gilany, K., Moens, L., and Weber, R. E. 2004. Allosteric regulation and temperature dependence of oxygen binding in human neuroglobin and cytoglobin. Molecular mechanisms and physiological significance. J. Biol. Chem. 279:44417–44426.

    Article  PubMed  CAS  Google Scholar 

  • Flogel, U., Merx, M. W., Godecke, A., Decking, U. K., and Schrader, J. 2001. Myoglobin: a scavenger of bioactive NO. Proc. Natl. Acad. Sci. U.S.A. 98:735–740.

    Article  PubMed  CAS  Google Scholar 

  • Frenkel, M. J., Dopheide, T. A., Wagland, B. M., and Ward, C. W. 1992. The isolation, characterization and cloning of a globin-like, host-protective antigen from the excretory-secretory products of Trichostrongylus colubriformis. Mol. Biochem. Parasitol. 50:27–36.

    Article  PubMed  CAS  Google Scholar 

  • Geuens, E. 2007. A structural and functional study of globins in vertebrates and nonvertebrates. Doctorate thesis, Universiteit Antwerpen.

    Google Scholar 

  • Gibson, Q. H., Olson, J. S., McKinnie, R. E., and Rohlfs, R. J. 1986. A kinetic description of ligand binding to sperm whale myoglobin. J. Biol. Chem. 261:10228–10239.

    PubMed  CAS  Google Scholar 

  • Gibson, Q. H., Regan, R., Olson, J. S., Carver, T. E., Dixon, B., Pohajdak, B., Sharma, P. K., and Vinogradov, S. N. 1993. Kinetics of ligand binding to Pseudoterranova decipiens and Ascaris suum hemoglobins and to Leu-29→Tyr sperm whale myoglobin mutant. J. Biol. Chem. 268:16993–16998.

    PubMed  CAS  Google Scholar 

  • Gibson, Q. H., and Smith, M. H. 1965. Rates of reaction of Ascaris haemoglobins with ligands. Proc. R. Soc. Lond. B Biol. Sci. 163:206–214.

    PubMed  CAS  Google Scholar 

  • Gibson, Q. H., Wittenberg, J. B., Wittenberg, B. A., Bogusz, D., and Appleby, C. A. 1989. The kinetics of ligand binding to plant hemoglobins. Structural implications. J. Biol. Chem. 264:100–107.

    PubMed  CAS  Google Scholar 

  • Gilbert, W. 1978. Why genes in pieces? Nature 271:501.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W. 1987. The exon theory of genes. Cold Spring Harb. Symp. Quant. Biol. 52:901–905.

    CAS  Google Scholar 

  • Goldberg, D. E. 1995. The enigmatic oxygen-avid hemoglobin of Ascaris. Bioessays 17:177–182.

    Article  PubMed  CAS  Google Scholar 

  • Hankeln, T., Friedl, H., Ebersberger, I., Martin, J., and Schmidt, E. R. 1997. A variable intron distribution in globin genes of Chironomus: evidence for recent intron gain. Gene 205:151–160.

    Article  PubMed  CAS  Google Scholar 

  • Hardison, R. C. 1996. A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc. Natl. Acad. Sci. U.S.A. 93:5675–5679.

    Article  PubMed  CAS  Google Scholar 

  • Hoogewijs, D., Geuens, E., Dewilde, S., Moens, L., Vierstraete, A., Vinogradov, S., and Vanfleteren, J. 2004. Genome-wide analysis of the globin gene family of C. elegans. IUBMB Life 56:697–702.

    Article  PubMed  CAS  Google Scholar 

  • Hoogewijs, D., Geuens, E., Dewilde, S., Vierstraete, A., Moens, L., Vinogradov, S., and Vanfleteren, J. R. 2007. Wide diversity in structure and expression profiles among members of the Caenorhabditis elegans globin protein family. BMC Genomics 8:356.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, P. W., Watts, R. A., Trevaskis, B., Llewelyn, D. J., Burnell, J., Dennis, E. S., and Peacock, W. J. 2001. Expression and evolution of functionally distinct haemoglobin genes in plants. Plant Mol. Biol. 47:677–692.

    Article  PubMed  CAS  Google Scholar 

  • Hyldig-Nielsen, J. J., Jensen, E. O., Paludan, K., Wiborg, O., Garrett, R., Jorgensen, P., and Marcker, K. A. 1982. The primary structures of two leghemoglobin genes from soybean. Nucleic Acids Res. 10:689–701.

    Article  PubMed  CAS  Google Scholar 

  • Kloek, A. P., McCarter, J. P., Setterquist, R. A., Schedl, T., and Goldberg, D. E. 1996. Caenorhabditis globin genes: rapid intronic divergence contrasts with conservation of silent exonic sites. J. Mol. Evol. 43:101–108.

    Article  PubMed  CAS  Google Scholar 

  • Kloek, A. P., Sherman, D. R., and Goldberg, D. E. 1993. Novel gene structure and evolutionary context of Caenorhabditis elegans globin. Gene 129:215–221.

    Article  PubMed  CAS  Google Scholar 

  • Kloek, A. P., Yang, J., Mathews, F. S., Frieden, C., and Goldberg, D. E. 1994. The tyrosine B10 hydroxyl is crucial for oxygen avidity of Ascaris hemoglobin. J. Biol. Chem. 269:2377–2379.

    PubMed  CAS  Google Scholar 

  • Kloek, A. P., Yang, J., Mathews, F. S., and Goldberg, D. E. 1993. Expression, characterization, and crystallization of oxygen-avid Ascaris hemoglobin domains. J. Biol. Chem. 268:17669–17671.

    PubMed  CAS  Google Scholar 

  • Lee, D. L., and Smith, M. H. 1965. Hemoglobins of parasitic animals. Exp. Parasitol. 16:392–424.

    Article  PubMed  CAS  Google Scholar 

  • Mansell, J. B., Tirnms, K., Tate, W. P., Moens, L., and Trotman, C. N. 1993. Expression of a globin gene in Caenorhabditis elegans. Biochem. Mol. Biol. Int. 30:643–647.

    PubMed  CAS  Google Scholar 

  • Minning, D. M., Gow, A. J., Bonaventura, J., Braun, R., Dewhirst, M., Goldberg, D. E., and Stamler, J. S. 1999. Ascaris haemoglobin is a nitric oxide-activated ‘deoxygenase’. Nature 401:497–502.

    Article  PubMed  CAS  Google Scholar 

  • Minning, D. M., Kloek, A. P., Yang, J., Mathews, F. S., and Goldberg, D. E. 1995. Subunit interactions in Ascaris hemoglobin octamer formation. J. Biol. Chem. 270:22248–22253.

    Article  PubMed  CAS  Google Scholar 

  • Miyata, T., Yasunaga, T., and Nishida, T. 1980. Nucleotide sequence divergence and functional constraint in mRNA evolution. Proc. Natl. Acad. Sci. U.S.A. 77:7328–7332.

    Article  PubMed  CAS  Google Scholar 

  • Moens, L., Vanfleteren, J., De Baere, I., Jellie, A. M., Tate, W., and Trotman, C. N. 1992. Unexpected intron location in non-vertebrate globin genes. FEBS Lett. 312:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Mohamed, A. K., Burr, C., and Burr, A. H. 2007. Unique two-photoreceptor scanning eye of the nematode Mermis nigrescens. Biol. Bull. 212:206–221.

    Article  PubMed  Google Scholar 

  • Okazaki, T., Briehl, R. W., Wittenberg, J. B., and Wittenberg, B. A. 1965. The hemoglobin of Ascaris perienteric fluid. II. Molecular weight and subunits. Biochim. Biophys. Acta 111:496–502.

    PubMed  CAS  Google Scholar 

  • Okazaki, T., and Wittenberg, J. B. 1965. The hemoglobin of Ascaris perienteric fluid. 3. Equilibria with oxygen and carbon monoxide. Biochim. Biophys. Acta 111:503–511.

    PubMed  CAS  Google Scholar 

  • Olson, J. S., Mathews, A. J., Rohlfs, R. J., Springer, B. A., Egeberg, K. D., Sligar, S. G., Tame, J., Renaud, J. P., and Nagai, K. 1988. The role of the distal histidine in myoglobin and haemoglobin. Nature 336:265–266.

    Article  PubMed  CAS  Google Scholar 

  • Perutz, M. F. 1990. Mechanisms regulating the reactions of human hemoglobin with oxygen and carbon monoxide. Annu. Rev. Physiol. 52:1–25.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, E. S., Huang, S., Wang, J., Miller, L. M., Vidugiris, G., Kloek, A. P., Goldberg, D. E., Chance, M. R., Wittenberg, J. B., and Friedman, J. M. 1997. A comparison of functional and structural consequences of the tyrosine B10 and glutamine E7 motifs in two invertebrate hemoglobins (Ascaris suum and Lucina pectinatd). Biochemistry 36:13110–13121.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Trelles, F., Tarrio, R., and Ayala, F. J. 2006. Origins and evolution of spliceosomal introns. Annu. Rev. Genet. 40:47–76.

    Article  PubMed  CAS  Google Scholar 

  • Rohlfs, R. J., Mathews, A. J., Carver, T. E., Olson, J. S., Springer, B. A., Egeberg, K. D., and Sligar, S. G. 1990. The effects of amino acid substitution at position E7 (residue 64) on the kinetics of ligand binding to sperm whale myoglobin. J. Biol. Chem. 265:3168–3176.

    PubMed  CAS  Google Scholar 

  • Rose, J. E., and Kaplan, K. L. 1972. Purification, molecular weight, and oxygen equilibrium of hemoglobin from Syngamus trachea, the poultry gapeworm. J. Parasitol. 58:903–906.

    Article  PubMed  CAS  Google Scholar 

  • Roy, S. W., and Gilbert, W. 2006. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat. Rev. Genet. 7:211–221.

    PubMed  Google Scholar 

  • Sharpe, M. J., and Lee, D. L. 1981. Changes in the level of acetylcholinesterase of nematospiroides dubius and Trichostrongylus colubriformis following paralysis by levamisole in vivo. Mol. Biochem. Parasitol. 3:57–60.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, D. R., Kloek, A. P., Krishnan, B. R., Guinn, B., and Goldberg, D. E. 1992. Ascaris hemoglobin gene: plant-like structure reflects the ancestral globin gene. Proc. Natl. Acad. Sci. U.S.A. 89:11696–11700.

    Article  PubMed  CAS  Google Scholar 

  • Sim, S., Park, G. M., and Yong, T. S. 2003. Cloning and characterization of Clonorchis sinensis myoglobin using immune sera against excretory-secretory antigens. Parasitol. Res. 91:338–343.

    Article  PubMed  Google Scholar 

  • Smith, M. H., and Lee, D. L. 1964. Metabolism of haemoglobin and haemitin compounds in Ascaris lumbrivcoides. Proc. R. Soc. Lond. B Biol. Sci. 157:234–257.

    Google Scholar 

  • Sulston, J., Du, Z., Thomas, K., Wilson, R., Hillier, L., Staden, R., Halloran, N., Green, P., Thierry-Mieg, J., Qiu, L., Dear, S., Coulson, A., Craxton, M., Durbin, R., Berks, M., Metzstein, M., Hawkins, T., Ainscough, R., and Waterston, R. 1992. The C. elegans genome sequencing project: a beginning. Nature 356:37–41.

    Article  PubMed  Google Scholar 

  • Trevaskis, B., Watts, R. A., Andersson, C. R., Llewellyn, D. J., Hargrove, M. S., Olson, J. S., Dennis, E. S., and Peacock, W. J. 1997. Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc. Natl. Acad. Sci. U.S.A. 94:12230–12234.

    Article  PubMed  CAS  Google Scholar 

  • Uzan, J., Dewilde, S., Burmester, T., Hankeln, T., Moens, L., Hamdane, D., Marden, M. C., and Kiger, L. 2004. Neuroglobin and other hexacoordinated hemoglobins show a weak temperature dependence of oxygen binding. Biophys. J. 87:1196–1204.

    Article  PubMed  CAS  Google Scholar 

  • Vanfleteren, J. R., Van de Peer, Y., Blaxter, M. L., Tweedie, S. A., Trotman, C., Lu, L., Van Hauwaert, M. L., and Moens, L. 1994. Molecular genealogy of some nematode taxa as based on cytochrome c and globin amino acid sequences. Mol. Phylogenet. Evol. 3:92–101.

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov, S., and Moens, L. 2008. Diversity of globin function: enzymatic, transport, storage and sensing. J. Biol. Chem. (in press).

    Google Scholar 

  • Vinogradov, S. N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Gough, J., Dewilde, S., Moens, L., and Vanfleteren, J. R. 2006. A phylogenomic profile of globins. BMC. Evol. Biol. 6:31.

    Article  PubMed  CAS  Google Scholar 

  • Watts, R. A., Hunt, P. W., Hvitved, A. N., Hargrove, M. S., Peacock, W. J., and Dennis, E. S. 2001. A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Proc. Natl. Acad. Sci. U.S.A. 98:10119–10124.

    Article  PubMed  CAS  Google Scholar 

  • Weber, R. E., and Vinogradov, S. N. 2001. Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol. Rev. 81:569–628.

    PubMed  CAS  Google Scholar 

  • Wittenberg, J. B. (1992) Functions of Cytoplasmic Hemoglobins and Myohemerythrin. Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Wittenberg, J. B., and Wittenberg, B. A. 1990. Mechanisms of cytoplasmic hemoglobin and myoglobin function. Annu. Rev. Biophys. Biophys. Chem. 19:217–241.

    Article  PubMed  CAS  Google Scholar 

  • Xia, Z., Zhang, W., Nguyen, B. D., Mar, G. N., Kloek, A. P., and Goldberg, D. E. 1999. 1H NMR investigation of the distal hydrogen bonding network and ligand tilt in the cyanomet complex of oxygen-avid Ascaris suum hemoglobin. J. Biol. Chem. 274:31819–31826.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Kloek, A. P., Goldberg, D. E., and Mathews, F. S. 1995. The structure of Ascaris hemoglobin domain I at 2.2 A resolution: molecular features of oxygen avidity. Proc. Natl. Acad. Sci. U.S.A. 92:4224–4228.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., Rashid, K. A., Haque, M., Siddiqi, A. H., Vinogradov, S. N., Moens, L., and Mar, G. N. 1997. Solution of 1H NMR structure of the heme cavity in the oxygen-avid myoglobin from the trematode Paramphistomum epiclitum. J. Biol. Chem. 272:3000–3006.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Italia

About this chapter

Cite this chapter

Hoogewijs, D., Geuens, E., Tilleman, L., Vanfleteren, J.R., Moens, L., Dewilde, S. (2008). Ever Surprising Nematode Globins. In: Bolognesi, M., di Prisco, G., Verde, C. (eds) Dioxygen Binding and Sensing Proteins. Protein Reviews, vol 9. Springer, Milano. https://doi.org/10.1007/978-88-470-0807-6_19

Download citation

Publish with us

Policies and ethics