Ever Surprising Nematode Globins

  • David Hoogewijs
  • Eva Geuens
  • Lesley Tilleman
  • Jacques R. Vanfleteren
  • Luc Moens
  • Sylvia Dewilde
Part of the Protein Reviews book series (PRON, volume 9)


Nematodes express pseudocoelomic, body wall and cuticle globin isoforms. All globin isoforms display the major determinants of the globin fold and a B10Tyr/E7Gln residue pair, which is a signature of high oxygen affinity. The hitherto studied pseudocoelomic globins are octamers of covalently linked didomain globin chains. Body wall globins so far are monomeric, whereas cuticle globins are tetrameric. The extremely high oxygen affinity of the pseudocoelomic globins is caused by a network of three H-bonds between the bound ligand, B10Tyr and E7Gln resulting in a very low dissociation rate. The body wall and cuticle globins, albeit also displaying B10Tyr and E7Gln, have more moderate oxygen affinities. The structural reason for the latter observation is unknown. Although many hypotheses have been put forward, the real function of the nematode globins remains illusive.

Caenorhabditis elegans expresses 33 globin-like proteins. They display the major determinants of the globin fold and are expressed at very low levels. Most of them have N- and C-terminal extensions as well as interhelical insertions of variable length. Orthologues of these globins have been identified in closely related species and also in other nematode taxa.

Introns inserted at B12.2 and G7.0 are common in nematode globin genes and the E-helix is also interrupted by an intron, however at more variable positions. The globins of C. elegans are unique in having more introns that seem to be inserted rather randomly. Thus the intron insertion pattern of the nematode globin introns substantially deviates from the conserved intron/exon pattern seen in vertebrates.

Phylogenetic analysis of all nematode globin sequences reveals two strictly separated clades, one comprises all C. elegans globins except ZK637.13 and the other groups ZK637.13 and all other nematode globins. This might suggest that the globins in both clades have acquired different functions.


Body Wall Parasitic Nematode Globin Gene Intron Gain Intron Insertion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blaxter, M. 1993. Nemoglobins: Divergent nematode globins. Parasitol. Today 9:353–360.PubMedCrossRefGoogle Scholar
  2. Blaxter, M. L., Ingram, L., and Tweedie, S. 1994. Sequence, expression and evolution of the globins of the parasitic nematode Nippostrongylus brasiliensis. Mol. Biochem. Parasitol. 68:1–14.PubMedCrossRefGoogle Scholar
  3. Brunori, M. 2001. Nitric oxide moves myoglobin centre stage. Trends Biochem. Sci. 26:209–210.PubMedCrossRefGoogle Scholar
  4. Burmester, T., Ebner, B., Weich, B., and Hankeln, T. 2002. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol. Biol. Evol. 19:416–421.PubMedGoogle Scholar
  5. Burmester, T., Weich, B., Reinhardt, S., and Hankeln, T. 2000. A vertebrate globin expressed in the brain. Nature 407:520–523.PubMedCrossRefGoogle Scholar
  6. Burr, A. H., and Harosi, F. I. 1985. Naturally crystalline hemoglobin of the nematode Mermis nigrescens. An in situ microspectrophotometric study of chemical properties and dichroism. Biophys. J. 47:527–536.PubMedCrossRefGoogle Scholar
  7. Burr, A. H., Hunt, P., Wagar, D. R., Dewilde, S., Blaxter, M. L., Vanfleteren, J. R., and Moens, L. 2000. A hemoglobin with an optical function. J. Biol. Chem. 275:4810–4815.PubMedCrossRefGoogle Scholar
  8. Burr, A. H., Schiefke, R., and Bollerup, G. 1975. Properties of a hemoglobin from the chromatrope of the nematode Mermis nigrescens. Biochim. Biophys. Acta 405:404–411.PubMedGoogle Scholar
  9. Cavalier-Smith, T. 1985. Selfish DNA and the origin of introns. Nature 315:283–284.PubMedCrossRefGoogle Scholar
  10. Coletta, M., Ascenzi, P., and Brunori, M. 1988. Kinetic evidence for a role of heme geometry on the modulation of carbon monoxide reactivity in human hemoglobin. J. Biol. Chem. 263:18286–18289.PubMedGoogle Scholar
  11. Darawshe, S., and Daniel, E. 1991. Molecular symmetry and arrangement of subunits in extracellular hemoglobin from the nematode Ascaris suum. Eur. J. Biochem. 201:169–173.PubMedCrossRefGoogle Scholar
  12. Darawshe, S., Tsafadyah, Y., and Daniel, E. 1987. Quaternary structure of erythrocruorin from the nematode Ascaris suum. Evidence for unsaturated haem-binding sites. Biochem. J. 242:689–694.PubMedGoogle Scholar
  13. Das, T. K., Samuni, U., Lin, Y., Goldberg, D. E., Rousseau, D. L., and Friedman, J. M. 2004. Distal heme pocket conformers of carbonmonoxy derivatives of Ascaris hemoglobin: evidence of conformational trapping in porous sol-gel matrices. J. Biol. Chem. 279:10433–10441.PubMedCrossRefGoogle Scholar
  14. Davenport, H. E. 1949. Hemoglobins of Ascaris lumbricoides. Proc. R. Soc. Lond. Biol. Sci. 136:255–270.Google Scholar
  15. De Baere, I., Liu, L., Moens, L., Van Beeumen, J., Gielens, C., Richelle, J., Trotman, C., Finch, J., Gerstein, M., and Perutz, M. 1992. Polar zipper sequence in the high-affinity hemoglobin of Ascaris suum: amino acid sequence and structural interpretation. Proc. Natl. Acad. Sci. U.S.A. 89:4638–4642.PubMedCrossRefGoogle Scholar
  16. De Baere, I., Perutz, M. F., Kiger, L., Marden, M. C., and Poyart, C. 1994. Formation of two hydrogen bonds from the globin to the heme-linked oxygen molecule in Ascaris hemoglobin. Proc. Natl. Acad. Sci. U.S.A. 91:1594–1597.PubMedCrossRefGoogle Scholar
  17. Dewilde, S., Blaxter, M., Van Hauwaert, M. L., Van Houte, K., Pesce, A., Griffon, N., Kiger, L., Marden, M. C., Vermeire, S., Vanfleteren, J., Esmans, E., and Moens, L. 1998. Structural, functional, and genetic characterization of Gastrophilus hemoglobin. J. Biol. Chem. 273:32467–32474.PubMedCrossRefGoogle Scholar
  18. Dewilde, S., Kiger, L., Burmester, T., Hankeln, T., Baudin-Creuza, V., Aerts, T., Marden, M.C., Caubergs, R., and Moens, L. 2001. Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J. Biol. Chem. 276:38949–38955.PubMedCrossRefGoogle Scholar
  19. Dickerson, R. E., and Geis, I. (1983) Hemoglobin, 1st edn. Amsterdam: Benjamin/Cummings Inc.Google Scholar
  20. Dixon, B., Walker, B., Kimmins, W., and Pohajdak, B. 1991. Isolation and sequencing of a cDNA for an unusual hemoglobin from the parasitic nematode Pseudoterranova decipiens. Proc. Natl. Acad. Sci. U.S.A. 88:5655–5659.PubMedCrossRefGoogle Scholar
  21. Draghi, F., Miele, A. E., Travaglini-Allocatelli, C., Vallone, B., Brunori, M., Gibson, Q. H., and Olson, J. S. 2002. Controlling ligand binding in myoglobin by mutagenesis. J. Biol. Chem. 277:7509–7519.PubMedCrossRefGoogle Scholar
  22. Fago, A., Hundahl, C., Dewilde, S., Gilany, K., Moens, L., and Weber, R. E. 2004. Allosteric regulation and temperature dependence of oxygen binding in human neuroglobin and cytoglobin. Molecular mechanisms and physiological significance. J. Biol. Chem. 279:44417–44426.PubMedCrossRefGoogle Scholar
  23. Flogel, U., Merx, M. W., Godecke, A., Decking, U. K., and Schrader, J. 2001. Myoglobin: a scavenger of bioactive NO. Proc. Natl. Acad. Sci. U.S.A. 98:735–740.PubMedCrossRefGoogle Scholar
  24. Frenkel, M. J., Dopheide, T. A., Wagland, B. M., and Ward, C. W. 1992. The isolation, characterization and cloning of a globin-like, host-protective antigen from the excretory-secretory products of Trichostrongylus colubriformis. Mol. Biochem. Parasitol. 50:27–36.PubMedCrossRefGoogle Scholar
  25. Geuens, E. 2007. A structural and functional study of globins in vertebrates and nonvertebrates. Doctorate thesis, Universiteit Antwerpen.Google Scholar
  26. Gibson, Q. H., Olson, J. S., McKinnie, R. E., and Rohlfs, R. J. 1986. A kinetic description of ligand binding to sperm whale myoglobin. J. Biol. Chem. 261:10228–10239.PubMedGoogle Scholar
  27. Gibson, Q. H., Regan, R., Olson, J. S., Carver, T. E., Dixon, B., Pohajdak, B., Sharma, P. K., and Vinogradov, S. N. 1993. Kinetics of ligand binding to Pseudoterranova decipiens and Ascaris suum hemoglobins and to Leu-29→Tyr sperm whale myoglobin mutant. J. Biol. Chem. 268:16993–16998.PubMedGoogle Scholar
  28. Gibson, Q. H., and Smith, M. H. 1965. Rates of reaction of Ascaris haemoglobins with ligands. Proc. R. Soc. Lond. B Biol. Sci. 163:206–214.PubMedGoogle Scholar
  29. Gibson, Q. H., Wittenberg, J. B., Wittenberg, B. A., Bogusz, D., and Appleby, C. A. 1989. The kinetics of ligand binding to plant hemoglobins. Structural implications. J. Biol. Chem. 264:100–107.PubMedGoogle Scholar
  30. Gilbert, W. 1978. Why genes in pieces? Nature 271:501.PubMedCrossRefGoogle Scholar
  31. Gilbert, W. 1987. The exon theory of genes. Cold Spring Harb. Symp. Quant. Biol. 52:901–905.Google Scholar
  32. Goldberg, D. E. 1995. The enigmatic oxygen-avid hemoglobin of Ascaris. Bioessays 17:177–182.PubMedCrossRefGoogle Scholar
  33. Hankeln, T., Friedl, H., Ebersberger, I., Martin, J., and Schmidt, E. R. 1997. A variable intron distribution in globin genes of Chironomus: evidence for recent intron gain. Gene 205:151–160.PubMedCrossRefGoogle Scholar
  34. Hardison, R. C. 1996. A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc. Natl. Acad. Sci. U.S.A. 93:5675–5679.PubMedCrossRefGoogle Scholar
  35. Hoogewijs, D., Geuens, E., Dewilde, S., Moens, L., Vierstraete, A., Vinogradov, S., and Vanfleteren, J. 2004. Genome-wide analysis of the globin gene family of C. elegans. IUBMB Life 56:697–702.PubMedCrossRefGoogle Scholar
  36. Hoogewijs, D., Geuens, E., Dewilde, S., Vierstraete, A., Moens, L., Vinogradov, S., and Vanfleteren, J. R. 2007. Wide diversity in structure and expression profiles among members of the Caenorhabditis elegans globin protein family. BMC Genomics 8:356.PubMedCrossRefGoogle Scholar
  37. Hunt, P. W., Watts, R. A., Trevaskis, B., Llewelyn, D. J., Burnell, J., Dennis, E. S., and Peacock, W. J. 2001. Expression and evolution of functionally distinct haemoglobin genes in plants. Plant Mol. Biol. 47:677–692.PubMedCrossRefGoogle Scholar
  38. Hyldig-Nielsen, J. J., Jensen, E. O., Paludan, K., Wiborg, O., Garrett, R., Jorgensen, P., and Marcker, K. A. 1982. The primary structures of two leghemoglobin genes from soybean. Nucleic Acids Res. 10:689–701.PubMedCrossRefGoogle Scholar
  39. Kloek, A. P., McCarter, J. P., Setterquist, R. A., Schedl, T., and Goldberg, D. E. 1996. Caenorhabditis globin genes: rapid intronic divergence contrasts with conservation of silent exonic sites. J. Mol. Evol. 43:101–108.PubMedCrossRefGoogle Scholar
  40. Kloek, A. P., Sherman, D. R., and Goldberg, D. E. 1993. Novel gene structure and evolutionary context of Caenorhabditis elegans globin. Gene 129:215–221.PubMedCrossRefGoogle Scholar
  41. Kloek, A. P., Yang, J., Mathews, F. S., Frieden, C., and Goldberg, D. E. 1994. The tyrosine B10 hydroxyl is crucial for oxygen avidity of Ascaris hemoglobin. J. Biol. Chem. 269:2377–2379.PubMedGoogle Scholar
  42. Kloek, A. P., Yang, J., Mathews, F. S., and Goldberg, D. E. 1993. Expression, characterization, and crystallization of oxygen-avid Ascaris hemoglobin domains. J. Biol. Chem. 268:17669–17671.PubMedGoogle Scholar
  43. Lee, D. L., and Smith, M. H. 1965. Hemoglobins of parasitic animals. Exp. Parasitol. 16:392–424.PubMedCrossRefGoogle Scholar
  44. Mansell, J. B., Tirnms, K., Tate, W. P., Moens, L., and Trotman, C. N. 1993. Expression of a globin gene in Caenorhabditis elegans. Biochem. Mol. Biol. Int. 30:643–647.PubMedGoogle Scholar
  45. Minning, D. M., Gow, A. J., Bonaventura, J., Braun, R., Dewhirst, M., Goldberg, D. E., and Stamler, J. S. 1999. Ascaris haemoglobin is a nitric oxide-activated ‘deoxygenase’. Nature 401:497–502.PubMedCrossRefGoogle Scholar
  46. Minning, D. M., Kloek, A. P., Yang, J., Mathews, F. S., and Goldberg, D. E. 1995. Subunit interactions in Ascaris hemoglobin octamer formation. J. Biol. Chem. 270:22248–22253.PubMedCrossRefGoogle Scholar
  47. Miyata, T., Yasunaga, T., and Nishida, T. 1980. Nucleotide sequence divergence and functional constraint in mRNA evolution. Proc. Natl. Acad. Sci. U.S.A. 77:7328–7332.PubMedCrossRefGoogle Scholar
  48. Moens, L., Vanfleteren, J., De Baere, I., Jellie, A. M., Tate, W., and Trotman, C. N. 1992. Unexpected intron location in non-vertebrate globin genes. FEBS Lett. 312:105–109.PubMedCrossRefGoogle Scholar
  49. Mohamed, A. K., Burr, C., and Burr, A. H. 2007. Unique two-photoreceptor scanning eye of the nematode Mermis nigrescens. Biol. Bull. 212:206–221.PubMedCrossRefGoogle Scholar
  50. Okazaki, T., Briehl, R. W., Wittenberg, J. B., and Wittenberg, B. A. 1965. The hemoglobin of Ascaris perienteric fluid. II. Molecular weight and subunits. Biochim. Biophys. Acta 111:496–502.PubMedGoogle Scholar
  51. Okazaki, T., and Wittenberg, J. B. 1965. The hemoglobin of Ascaris perienteric fluid. 3. Equilibria with oxygen and carbon monoxide. Biochim. Biophys. Acta 111:503–511.PubMedGoogle Scholar
  52. Olson, J. S., Mathews, A. J., Rohlfs, R. J., Springer, B. A., Egeberg, K. D., Sligar, S. G., Tame, J., Renaud, J. P., and Nagai, K. 1988. The role of the distal histidine in myoglobin and haemoglobin. Nature 336:265–266.PubMedCrossRefGoogle Scholar
  53. Perutz, M. F. 1990. Mechanisms regulating the reactions of human hemoglobin with oxygen and carbon monoxide. Annu. Rev. Physiol. 52:1–25.PubMedCrossRefGoogle Scholar
  54. Peterson, E. S., Huang, S., Wang, J., Miller, L. M., Vidugiris, G., Kloek, A. P., Goldberg, D. E., Chance, M. R., Wittenberg, J. B., and Friedman, J. M. 1997. A comparison of functional and structural consequences of the tyrosine B10 and glutamine E7 motifs in two invertebrate hemoglobins (Ascaris suum and Lucina pectinatd). Biochemistry 36:13110–13121.PubMedCrossRefGoogle Scholar
  55. Rodriguez-Trelles, F., Tarrio, R., and Ayala, F. J. 2006. Origins and evolution of spliceosomal introns. Annu. Rev. Genet. 40:47–76.PubMedCrossRefGoogle Scholar
  56. Rohlfs, R. J., Mathews, A. J., Carver, T. E., Olson, J. S., Springer, B. A., Egeberg, K. D., and Sligar, S. G. 1990. The effects of amino acid substitution at position E7 (residue 64) on the kinetics of ligand binding to sperm whale myoglobin. J. Biol. Chem. 265:3168–3176.PubMedGoogle Scholar
  57. Rose, J. E., and Kaplan, K. L. 1972. Purification, molecular weight, and oxygen equilibrium of hemoglobin from Syngamus trachea, the poultry gapeworm. J. Parasitol. 58:903–906.PubMedCrossRefGoogle Scholar
  58. Roy, S. W., and Gilbert, W. 2006. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat. Rev. Genet. 7:211–221.PubMedGoogle Scholar
  59. Sharpe, M. J., and Lee, D. L. 1981. Changes in the level of acetylcholinesterase of nematospiroides dubius and Trichostrongylus colubriformis following paralysis by levamisole in vivo. Mol. Biochem. Parasitol. 3:57–60.PubMedCrossRefGoogle Scholar
  60. Sherman, D. R., Kloek, A. P., Krishnan, B. R., Guinn, B., and Goldberg, D. E. 1992. Ascaris hemoglobin gene: plant-like structure reflects the ancestral globin gene. Proc. Natl. Acad. Sci. U.S.A. 89:11696–11700.PubMedCrossRefGoogle Scholar
  61. Sim, S., Park, G. M., and Yong, T. S. 2003. Cloning and characterization of Clonorchis sinensis myoglobin using immune sera against excretory-secretory antigens. Parasitol. Res. 91:338–343.PubMedCrossRefGoogle Scholar
  62. Smith, M. H., and Lee, D. L. 1964. Metabolism of haemoglobin and haemitin compounds in Ascaris lumbrivcoides. Proc. R. Soc. Lond. B Biol. Sci. 157:234–257.Google Scholar
  63. Sulston, J., Du, Z., Thomas, K., Wilson, R., Hillier, L., Staden, R., Halloran, N., Green, P., Thierry-Mieg, J., Qiu, L., Dear, S., Coulson, A., Craxton, M., Durbin, R., Berks, M., Metzstein, M., Hawkins, T., Ainscough, R., and Waterston, R. 1992. The C. elegans genome sequencing project: a beginning. Nature 356:37–41.PubMedCrossRefGoogle Scholar
  64. Trevaskis, B., Watts, R. A., Andersson, C. R., Llewellyn, D. J., Hargrove, M. S., Olson, J. S., Dennis, E. S., and Peacock, W. J. 1997. Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc. Natl. Acad. Sci. U.S.A. 94:12230–12234.PubMedCrossRefGoogle Scholar
  65. Uzan, J., Dewilde, S., Burmester, T., Hankeln, T., Moens, L., Hamdane, D., Marden, M. C., and Kiger, L. 2004. Neuroglobin and other hexacoordinated hemoglobins show a weak temperature dependence of oxygen binding. Biophys. J. 87:1196–1204.PubMedCrossRefGoogle Scholar
  66. Vanfleteren, J. R., Van de Peer, Y., Blaxter, M. L., Tweedie, S. A., Trotman, C., Lu, L., Van Hauwaert, M. L., and Moens, L. 1994. Molecular genealogy of some nematode taxa as based on cytochrome c and globin amino acid sequences. Mol. Phylogenet. Evol. 3:92–101.PubMedCrossRefGoogle Scholar
  67. Vinogradov, S., and Moens, L. 2008. Diversity of globin function: enzymatic, transport, storage and sensing. J. Biol. Chem. (in press).Google Scholar
  68. Vinogradov, S. N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Gough, J., Dewilde, S., Moens, L., and Vanfleteren, J. R. 2006. A phylogenomic profile of globins. BMC. Evol. Biol. 6:31.PubMedCrossRefGoogle Scholar
  69. Watts, R. A., Hunt, P. W., Hvitved, A. N., Hargrove, M. S., Peacock, W. J., and Dennis, E. S. 2001. A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Proc. Natl. Acad. Sci. U.S.A. 98:10119–10124.PubMedCrossRefGoogle Scholar
  70. Weber, R. E., and Vinogradov, S. N. 2001. Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol. Rev. 81:569–628.PubMedGoogle Scholar
  71. Wittenberg, J. B. (1992) Functions of Cytoplasmic Hemoglobins and Myohemerythrin. Berlin, Heidelberg: Springer-Verlag.Google Scholar
  72. Wittenberg, J. B., and Wittenberg, B. A. 1990. Mechanisms of cytoplasmic hemoglobin and myoglobin function. Annu. Rev. Biophys. Biophys. Chem. 19:217–241.PubMedCrossRefGoogle Scholar
  73. Xia, Z., Zhang, W., Nguyen, B. D., Mar, G. N., Kloek, A. P., and Goldberg, D. E. 1999. 1H NMR investigation of the distal hydrogen bonding network and ligand tilt in the cyanomet complex of oxygen-avid Ascaris suum hemoglobin. J. Biol. Chem. 274:31819–31826.PubMedCrossRefGoogle Scholar
  74. Yang, J., Kloek, A. P., Goldberg, D. E., and Mathews, F. S. 1995. The structure of Ascaris hemoglobin domain I at 2.2 A resolution: molecular features of oxygen avidity. Proc. Natl. Acad. Sci. U.S.A. 92:4224–4228.PubMedCrossRefGoogle Scholar
  75. Zhang, W., Rashid, K. A., Haque, M., Siddiqi, A. H., Vinogradov, S. N., Moens, L., and Mar, G. N. 1997. Solution of 1H NMR structure of the heme cavity in the oxygen-avid myoglobin from the trematode Paramphistomum epiclitum. J. Biol. Chem. 272:3000–3006.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • David Hoogewijs
    • 1
  • Eva Geuens
    • 2
  • Lesley Tilleman
    • 2
  • Jacques R. Vanfleteren
    • 1
  • Luc Moens
    • 2
  • Sylvia Dewilde
    • 2
  1. 1.Department of Biology and Center for Molecular PhylogenyGhent UniversityGhentBelgium
  2. 2.Department of Biomedical SciencesAntwerp UniversityBelgium

Personalised recommendations