Neuroglobin and Other Nerve Haemoglobins

  • Thorsten Burmester
  • Thomas Hankeln
Part of the Protein Reviews book series (PRON, volume 9)


The nervous system of animals requires huge amounts of metabolic energy and thus oxygen. Intracellular haemoglobins sporadically occur in glial cells and neurons of various invertebrate taxa, including Annelida, Arthropoda, Echiura, Mollusca, Nematoda and Nemertea. At least some of these respiratory proteins sustain the aerobic metabolism and thus the excitability of the nervous system. Recently, we have identified neuroglobin as an oxygen-binding protein of vertebrate neurons. The physiological role of neuroglobin, which is apparently present in much lower amounts than many invertebrate nerve haemoglobins, is less well established. Phylogenetic analyses have shown that neuroglobin is orthologous to at least some of the invertebrate respiratory proteins, while other invertebrate nerve globins may have divergent evolutionary origins. Functional changes thus appear to be common in animal globin evolution. The occurrence of yet other types of intracellular globins in nervous tissue of vertebrates is functionally unexplained and requires further studies.


Globin Gene Respiratory Protein Guanine Nucleotide Dissociation Inhibitor Globin Family Vertebrate Globin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arvanitaki, A., and Chalazonitis, N. 1960. Photopotentiels d’excitation et d’inhibition de différents somata identifiables (Aplysia). Activations monochromatiques. Bull. Inst. Oceanog. 57:1–83.Google Scholar
  2. Awenius, C., Hankeln, T., and Burmester, T. 2001. Neuroglobins from the zebrafish Danio rerio and the pufferfish Tetraodon nigroviridis. Biochem. Biophys. Res. Commun. 287:418–421.PubMedCrossRefGoogle Scholar
  3. Bentmann, A., Schmidt, M., Reuss, S., Wolfrum, U., Hankeln, T., and Burmester, T. 2005. Divergent distribution in vascular and avascular mammalian retinae links neuroglobin to cellular respiration. J. Biol. Chem. 280:20660–20665.PubMedCrossRefGoogle Scholar
  4. Brunori, M., Giuffre, A., Nienhaus, K., Nienhaus, G. U., Scandurra, F. M., and Vallone, B. 2005. Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes. Proc. Natl. Acad. Sci. U.S.A. 102:8483–8488.PubMedCrossRefGoogle Scholar
  5. Burmester, T., and Hankeln, T. 2004. Neuroglobin: A respiratory protein of the nervous system. News Phys. Sci. 19:110–113.Google Scholar
  6. Burmester, T., Ebner, B., Weich, B., and Hankeln, T. 2002. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol. Biol. Evol. 19:416–421.PubMedGoogle Scholar
  7. Burmester, T., Gerlach, F., and Hankeln, T. 2007. Regulation and role of neuroglobin and cytoglobin under hypoxia. Adv. Exp. Med. Biol. 618:169–180.PubMedCrossRefGoogle Scholar
  8. Burmester, T., Weich, B., Reinhardt, S., and Hankeln, T. 2000. A vertebrate globin expressed in the brain. Nature 407:520–523.PubMedCrossRefGoogle Scholar
  9. de Sanctis, D., Dewilde, S., Pesce, A., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., and Bolognesi, M. 2004a. Crystal structure of cytoglobin: the fourth globin type discovered in man displays heme hexa-coordination. J. Mol. Biol. 336:917–927.PubMedCrossRefGoogle Scholar
  10. de Sanctis, D., Dewilde, S., Pesce, A., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., and Bolognesi, M. 2004b. Mapping protein matrix cavities in human cytoglobin through Xe atom binding: a crystallographic investigation. Biochem. Biophys. Res. Commun. 316:1217–1221.PubMedCrossRefGoogle Scholar
  11. Dewilde, S., Blaxter, M., Van, Hauwaert, M. L., Vanfleteren, J., Esmans, E. L., Marden, M., Griffon, N., and Moens, L. 1996. Globin and globin gene structure of the nerve myoglobin of Aphrodite aculeata. J. Biol. Chem. 271:19865–19870.PubMedCrossRefGoogle Scholar
  12. Dewilde, S., Ebner, B., Vinck, E., Gilany, K., Hankeln, T., Burmester, T., Kreiling, J., Reinisch, C., Vanfleteren, J., Kiger, L., Marden, M.C, Hundahl, C., Fago, A., Van Doorslaer, S., and Moens, L. 2006. The nerve hemoglobin of the bivalve mollusc Spisula solidissima: molecular cloning, ligand binding studies and phylogenetic analysis. J. Biol. Chem. 281:5364–5372.PubMedCrossRefGoogle Scholar
  13. Dewilde, S., Kiger, L., Burmester, T., Hankeln, T., Baudin-Creuza, V., Aerts, T., Marden, M.C., Caubergs, R., and Moens, L. 2001. Biochemical characterization and ligand-binding properties of neuroglobin, a novel member of the globin family. J. Biol. Chem. 276:38949–38955.PubMedCrossRefGoogle Scholar
  14. Doeller, J. E., and Kraus, D. W. 1988. A physiological comparison of bivalve mollusc cerebro-visceral connectives with and without neurohemoglobin. II. Neurohemoglobin characteristics. Biol. Bull. 174:67–76.CrossRefGoogle Scholar
  15. Fago, A., Mathews, A. J., Dewilde, S., Moens, L., and Brittain T. 2006. The reactions of neuroglobin with CO: evidence for two forms of the ferrous protein. J. Inorg. Biochem. 100: 1339–1343.PubMedCrossRefGoogle Scholar
  16. Fordel, E., Thijs, L., Moens, L., and Dewilde, S. 2007. Neuroglobin and cytoglobin expression in mice. FEBS J. 274:1312–1317.PubMedCrossRefGoogle Scholar
  17. Fraser, J., de Mello, L. V., Ward, D., Rees, H. H., Williams, D. R., Fang, Y., Brass, A., Gracey, A. Y., and Cossins, A. R. 2006. Hypoxia-inducible myoglobin expression in nonmuscle tissue. Proc. Natl. Acad. Sci. U.S.A. 103:2977–2981.PubMedCrossRefGoogle Scholar
  18. Fuchs, C., Burmester, T., and Hankeln, T. 2006. The amphibian globin gene repertoire as revealed by the Xenopus genome sequence. Cytogenet. Genome Res. 112:296–306.PubMedCrossRefGoogle Scholar
  19. Hamdane, D., Kiger, L., Dewilde, S., Green, B. N., Pesce, A., Uzan, J., Burmester, T., Hankeln, T., Bolognesi, M., Moens, L., and Marden, M. C. 2003. The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin. J. Biol. Chem. 278:51713–51721.PubMedCrossRefGoogle Scholar
  20. Hankeln, T., and Burmester, T. 2008. Neuroglobin and cytoglobin. In: The Smallest Biomolecules: Diatomics and Their Interactions with Heme Proteins, ed. A. Ghosh, pp. 203–218.Google Scholar
  21. Hankeln, T., Ebner, B., Fuchs, C. Gerlach, F., Haberkamp, M., Laufs, T., Roesner, A., Schmidt, M., Weich, B., Wystub, S., Saaler-Reinhardt, S., Reuss, S., Bolognesi, M., De Sanctis, D., Marden, M.C., Kiger, L., Dewilde, S., Moens, L., Nevo, E., Avivi, A., Weber, R. E., Fago, A., and Burmester, T. 2005. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J. Inorg. Biochem. 99:110–119.PubMedCrossRefGoogle Scholar
  22. Herold, S., Fago, A., Weber, R. E., Dewilde, S., and Moens, L. 2004. Reactivity studies of the Fe(III) and Fe(II)NO forms of human neuroglobin reveal a potential role against oxidative stress. J. Biol. Chem. 279:22841–22847.PubMedCrossRefGoogle Scholar
  23. Humphries, S., Windass, J., and Williamson, R. 1976. Mouse globin gene expression in erythroid and non-erythroid tissues. Cell 7:267–277.PubMedCrossRefGoogle Scholar
  24. Kraus, D. W., Doeller, J. E., and Smith, P. R. 1988. A physiological comparison of bivalve mollusc cerebro-visceral connectives with and without neurohemoglobin. I. Ultrastructural and electrophysiological characteristics. Biol. Bull. 174:54–66.CrossRefGoogle Scholar
  25. Kraus, D. W., and Doeller, J. E. 1988. A physiological comparison of bivalve mollusc cerebro-visceral connectives with and without neurohemoglobin. III. Oxygen demand. Biol. Bull. 174: 346–354.CrossRefGoogle Scholar
  26. Kraus, D. W., and Colacino, J. M. 1986. Extended oxygen delivery from the nerve hemoglobin of Tellina alternata (Bivalvia). Science 232:90–92.PubMedCrossRefGoogle Scholar
  27. Kugelstadt, D., Haberkamp, M., Hankeln, T., and Burmester, T. 2004. Neuroglobin, cytoglobin and a novel, retina-specific globin from chicken. Biochem. Biophys. Res. Commun. 325:719–725.PubMedCrossRefGoogle Scholar
  28. Lankester, E. R. 1872. A contribution to the knowledge of haemoglobin. Proc. Royal Soc. London 21:70–81.CrossRefGoogle Scholar
  29. Milton, S. L., Nayak, G., Lutz, P. L., and Prentice, H. M. 2006. Gene transcription of neuroglobin is upregulated by hypoxia and anoxia in the brain of the anoxia-tolerant turtle Trachemys scripta. J. Biomed. Sci. 13:509–514.PubMedCrossRefGoogle Scholar
  30. Moeller, I., Lew, R. A., Mendelsohn, F. A., Smith, A. I., Brennan, M. E., Tetaz, T. J., and Chai, S. Y., 1997. The globin fragment LVV-hemorphin-7 is an endogenous ligand for the AT4 receptor in the brain. J. Neurochem. 68:2530–2537.PubMedCrossRefGoogle Scholar
  31. Ohyagi, Y., Yamada, T., and Goto, I. 1994. Hemoglobin as a novel protein developmentally regulated in neurons. Brain Res. 635:323–327.PubMedCrossRefGoogle Scholar
  32. Pesce, A., Dewilde, S., Nardini, M., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., and Bolognesi, M. 2003. Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure 11:1087–1095.PubMedCrossRefGoogle Scholar
  33. Pesce, A., Nardini, M., Ascenzi, P., Geuens, E., Dewilde, S., Moens, L., Bolognesi, M., Riggs, A. F., Hale, A., Deng, P., Nienhaus, G. U., Olson, J. S., and Nienhaus, K., 2004. Thr-E11 regulates O2 affinity in Cerebratulus lacteus mini-hemoglobin. J. Biol. Chem. 279:33662–33672.PubMedCrossRefGoogle Scholar
  34. Reuss, S., Saaler-Reinhardt, S., Weich, B., Wystub, S., Reuss, M., Burmester, T., and Hankeln, T. 2002. Expression analysis of neuroglobin mRNA in rodent tissues. Neuroscience 115:645–656.PubMedCrossRefGoogle Scholar
  35. Roesner, A., Fuchs, C., Hankeln, T., and Burmester, T. 2005. A globin gene of ancient evolutionary origin in lower vertebrates: evidence for two distinct globin families in animals. Mol. Biol. Evol. 22:12–22.PubMedCrossRefGoogle Scholar
  36. Roesner, A., Hankeln, T., and Burmester, T. 2006. Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). J. Exp. Biol. 209:2129–2137.PubMedCrossRefGoogle Scholar
  37. Schindelmeiser, I., Kuhlmann, D., and Nolte, A. 1979. Localization and characterization of hemoproteins in the central nervous tissue of some gastropods. Comp. Biochem. Physiol. B 64:149–154.CrossRefGoogle Scholar
  38. Schmidt, M., Gerlach, F., Avivi, A., Laufs, T., Wystub, S., Simpson, J. C., Nevo, E., Saaler-Reinhardt, S., Reuss, S., Hankeln, T., and Burmester, T. 2004. Cytoglobin is a respiratory protein expressed in connective tissue and neurons that is up-regulated by hypoxia. J. Biol. Chem. 279:8063–8069.PubMedCrossRefGoogle Scholar
  39. Schmidt, M., Gießl, A., Laufs, T., Hankeln, T., Wolfrum, U., and Burmester, T. 2003. How does the eye breathe? Evidence for neuroglobin-mediated oxygen supply of the mammalian retina. J. Biol. Chem. 278:1932–1935.PubMedCrossRefGoogle Scholar
  40. Sun, Y., Jin, K., Mao, X. O., Zhu, Y., and Greenberg, D. A. 2001. Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc. Natl. Acad. Sci. U.S.A. 98:15306–15311.PubMedCrossRefGoogle Scholar
  41. Sun, Y., Jin, K., Peel, A., Mao, X. O., Xie, L., and Greenberg, D. A. 2003. Neuroglobin protects the brain from experimental stroke in vivo. Proc. Natl. Acad. Sci. U.S.A. 100:3497–3500.PubMedCrossRefGoogle Scholar
  42. Vandergon, T. L., Riggs, C. K., Gorr, T. A., Colacino, J. M., and Riggs, A. F. 1998. The mini-hemoglobins in neural and body wall tissue of the nemertean worm, Cerebratulus lacteus. J. Biol. Chem. 273:16998–17011.PubMedCrossRefGoogle Scholar
  43. Wakasugi, K., and Morishima, I. 2005. Identification of residues in human neuroglobin crucial for Guanine nucleotide dissociation inhibitor activity. Biochemistry 44:2943–2948.PubMedCrossRefGoogle Scholar
  44. Wakasugi, K., Nakano, T., and Morishima, I. 2003. Oxidized human neuroglobin acts as a heterotrimeric Ga protein guanine nucleotide dissociation inhibitor. J. Biol. Chem. 278:36505–36512.PubMedCrossRefGoogle Scholar
  45. Weber, R. E., and Vinogradov, S. N. 2001. Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol. Rev. 81:569–628.PubMedGoogle Scholar
  46. Wittenberg, B. A., Briehl, R.W., and Wittenberg, J. B. 1965. Haemoglobin of invertebrate tissues. Nerve haemoglobins of Aphrodite, Aplysia, and Halosydna. Biochem. J. 96:363–371.PubMedGoogle Scholar
  47. Wittenberg, J. B. 1992. Functions of cytoplasmatic hemoglobins and myohemerythrin. Adv. Comp. Environ. Physiol. 13:60–85.Google Scholar
  48. Wittenberg, J. B., and Wittenberg, B. A. 1990. Mechanisms of cytoplasmic hemoglobin and myoglobin function. Annu. Rev. Biophys. Chem. 19:217–241.CrossRefGoogle Scholar
  49. Wittenberg, J. B., and Wittenberg, B. A. 2003. Myoglobin function reassessed. J. Exp. Biol. 206:2011–2020.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Thorsten Burmester
    • 1
  • Thomas Hankeln
    • 2
  1. 1.Institute of Zoology, Molecular Animal PhysiologyUniversity of MainzMainzGermany
  2. 2.Institute of Molecular GeneticJohannes Gutenberg University MainzMainzGermany

Personalised recommendations