Skip to main content

The Bilatarian Sea Urchin and the Radial Starlet Sea Anemone Globins Share Strong Homologies with Vertebrate Neuroglobins

  • Chapter
Book cover Dioxygen Binding and Sensing Proteins

Part of the book series: Protein Reviews ((PRON,volume 9))

Abstract

A 34 834-bp gene in the genome of the sea urchin Strongylocentrotus purpuratus (Echinodermata) consists of 34 exons and 33 introns, and encodes a 2252aa putative chimeric Hb, comprising an unidentifiable nonglobin N-terminal domain of ∼150aa and 16 globin domains (D1–D16) of ∼150aa, except for D2, which lacks helices G and H. The similarity between the globin domains varies from 39 to 51% identity: they are linked tightly to one another, with interdomain segments of 10aa or less. Alignment of the globin domains with other globins shows them to have a D helix and His residues at both the E7 and F8 locations. Intron insertions within the globin domains occur at canonical positions B12.2 and G7.0. Blastp searches with each of the 16 domains showed a strong sequence similarity with vertebrate neuroglobins and globin X, the Cnidarian Nematostella vectensis, and with single-domain bacterial globins. A Bayesian analysis of the S. purpuratus globins, the 7 single domain globins from the Cnidarian N. vectensis and 80 globins from several metazoan groups, indicated that the S. purpuratus and N. vectensis globins share a molecular affinity with vertebrate neuroglobins and globin X, while annelid, mollusc, crustacean, lamprey, hagfish and urochordate globins form a clade with vertebrate cytoglobins. The common molecular signatures and gene structures shared between a radial metazoan, S. purpuratus and vertebrate globins suggest these proteins could exhibit ancestral metazoan globin properties and predate the Radiata-Bilateria split. We assume modern eumetazoan globin families could have derived from such a putative globin plesiogene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babenko, V. N., Rogozin, I. B., Mekhedov, S. L., and Koonin, E. V. 2004. Prevalence of intron gain over intron loss in the evolution of paralogous gene families. Nucleic Acids Res. 32:3724–3733.

    Article  PubMed  CAS  Google Scholar 

  • Baker, S., and Terwilliger, N. B. 1993. Hemoglobin structure and function in the rat-tailed sea cucumber Paracaudina chilensis. Biol. Bull. 185:115–122.

    Article  Google Scholar 

  • Bishop, J., Vandergon, T., Green, D., Doeller, J., and Kraus, D. 1998. A high-affinity hemoglobin is expressed in the notochord of amphioxus, Branchiostoma californiense. Biol. Bull. 195:255–259.

    Article  CAS  Google Scholar 

  • Burmester, T., Weich, B., Reinhardt, S., and Hankeln, T. 2000. A vertebrate globin expressed in the brain. Nature 407:520–523.

    Article  PubMed  CAS  Google Scholar 

  • Burmester, T., Ebner, B., Weich, B., and Hankeln, T. 2002. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol. Biol. Evol. 19:416–421.

    PubMed  CAS  Google Scholar 

  • Burmester, T., Haberkamp, M., Mitz, S., Roesner, A., Schmidt, M., Ebner, B., Gerlach, F., Fuchs, C., and Hankeln, T. 2004. Neuroglobin and cytoglobin: genes, proteins and evolution. IUBMB Life 56:703–707.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, A., Colacino, J., and Bonaventura, C. 2003. Functional and biochemical properties of the hemoglobins of the burrowing brittle star Hemipholis elongata Say (Echinodermata, Ophiuroidea). Biol. Bull. 205:54–65.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, M., Matthews, C. M., and Trotman, C. N. 2001. Multimeric hemoglobin of the Australian brine shrimp Parartemia. Mol. Biol. Evol. 18:570–576.

    PubMed  CAS  Google Scholar 

  • Ebner, B., Burmester, T., and Hankeln, T. 2003. Globin genes are present in Ciona intesti-nalis. Mol. Biol. Evol. 20:1521–1525.

    Article  PubMed  CAS  Google Scholar 

  • Hardison, R. C. 1996. A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc. Natl. Acad. Sci. U.S.A. 93:5675–5679.

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck, J. P., and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenet-ic trees. Bioinformatics 17:754–755.

    Article  PubMed  CAS  Google Scholar 

  • Keller, E. B., and Noon, W. A. 1984. Intron splicing: a conserved internal signal in introns of animal pre-mRNAs. Proc. Natl. Acad. Sci. U.S.A. 81:7417–7420.

    Article  PubMed  CAS  Google Scholar 

  • Letunic, I., Copley, R. R., Pils, B., Pinkert, S., Schultz, J., and Bork, P. 2006. SMART 5: domains in the context of genomes and networks. Nucleic Acids Res. 34:D257–260.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, C. M., and Trotman, C. N. 1998. Ancient and recent intron stability in the Artemia hemoglobin gene. J. Mol. Evol. 47:763–771.

    Article  PubMed  CAS  Google Scholar 

  • Mattick, J. S., and Gagen, M. J. 2001. The evolution of controlled multitasked gene networks: The role of introns and other noncoding RNAs in the development of complex organisms. Mol. Biol. Evol. 18:1611–1630.

    PubMed  CAS  Google Scholar 

  • Mauri, F., Omnaas, J., Davidson, L., Whitfill, C., and Kitto, G. B. 1991. Amino acid sequence of a globin from the sea cucumber Caudina (Molpadia) arenicola. Biochim. Biophys. Acta 1078:63–67.

    PubMed  CAS  Google Scholar 

  • McDonald, G. D., Davidson, L., and Kitto, G. B. 1992. Amino acid sequence of the coelomic C globin from the sea cucumber Caudina (Molpadia) arenicola. J. Protein Chem. 11:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D. J., Ball, E. E., and Technau, U. 2005. Cnidarians and ancestral genetic complexity in the animal kingdom. Trends Genet. 21:536–539.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, D. T., Kitto, G. B., and Hackert, M. L. 1995. Structural analysis of monomeric hemichrome and dimeric cyanomet hemoglobins from Caudina arenicola. J. Mol. Biol. 251:421–431.

    Article  PubMed  CAS  Google Scholar 

  • Mount, S. M. 1982. A catalogue of splice junction sequences. Nucleic Acid Res. 10: 459–472.

    Article  PubMed  CAS  Google Scholar 

  • Nott, A., Hir, H. L., and Moore, M. J. 2004. Splicing enhances translation in mammalian cells: An additional function of the exon junction complex, Genes Dev. 18:210–222.

    Article  PubMed  CAS  Google Scholar 

  • Putnam, N. H., Srivastava, M., Hellsten, U., Dirks, B., Chapman, J., Salamov, A., Terry, A., Shapiro, H., Lindquist, E., Kapitonov, V. V., Jurka, J., Genikhovich, G., Grigoriev, I. V., Lucas, S. M., Steele, R. E., Finnerty, J. R., Technau, U., Martindale, M. Q., and Rokhsar, D. S. 2007. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94.

    Article  PubMed  CAS  Google Scholar 

  • Roesner, A., Fuchs, C., Hankeln, T., and Burmester, T. 2005. A globin of ancient evolutionary origin in lower vertebrates: evidence for two distinct globin families in animals. Mol. Biol. Eval. 22:12–20.

    Article  CAS  Google Scholar 

  • Ruiz-Trillo, L, Riutort, M., Littlewood, D. T., Herniou, E. A., and Baguna, J. 1999. Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science 283:1919–1923.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer, A. A., Aravind, L., Madden, T., Shavrin, S., Spourge, J., Wolf, Y., Koonin, E.V., and Altschul, S. F. 2001. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 29:2994–3005.

    Article  PubMed  CAS  Google Scholar 

  • Sempere, L. F., Martinez, P., Cole, C., Baguna, J., and Peterson, K. J. 2007. Phylogenetic distribution of microRNAs supports the basal position of acoel flatworms and the polyphyly of Platyhelminthes. Evol. Dev. 9:409–415.

    PubMed  CAS  Google Scholar 

  • Shi, J., Blundell, T., and Mizuguchi, K. 2001. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310:243–257.

    Article  PubMed  CAS  Google Scholar 

  • Sodergren, E., Weinstock, G. M., Davidson, E. H., Cameron, R. A., Gibbs, R. A., et al. 2006. The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952.

    Article  PubMed  Google Scholar 

  • Sullivan, J. C., Ryan, J. F., Watson, J. A., Webb, J., Mullikin, J. C., Rokhsar, D., and Finnerty, J. R. 2006. StellaBase: the Nematostella vectensis Genomics Database. Nucleic Acids Res. 34:D495–499.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, J. C., Reitzel, A. M., and Finnerty, J. R. 2006. A high percentage of introns in human genes were present early in animal evolution: evidence from the basal metazoan Nematostella vectensis. Genome Inform. 17:219–229.

    PubMed  CAS  Google Scholar 

  • Suzuki, T. 1989. Amino acid sequence of a major globin from the sea cucumber Paracaudina chilensis. Biochim. Biophys. Acta 998:292–296.

    PubMed  CAS  Google Scholar 

  • Vasil, V., Clancy, M., Ferl, R. J., Vasil, I. K., and Hannah, L.C. 1989. Increased gene expression by the first intron of maize Shrunken-1 locus in grass species. Plant Physiol. 91:1575–1579.

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov, S. N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Gough, J., Guertin, M., Dewilde, S., Moens, L., and Vanfleteren, J. R., 2005. Three globin lineages belonging to two structural classes in genomes from the three kingdoms of life. Proc. Natl. Acad. Sci. U.S.A. 102:11385–11389.

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov, S. N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Gough, J., Guertin, M., Dewilde, S., Moens, L., and Vanfleteren, J. R., 2006. A phylogenomic profile of globins. BMC Evol. Biol. 6:31–67.

    Article  PubMed  Google Scholar 

  • Vinogradov, S. N., Hoogewijs, D., Bailly, X., Dewilde, S., Moens, L., and Vanfleteren, J. R. 2007. A model of globin evolution. Gene 398:132–142.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J. 2003. Evolution by gene duplication: an update. Trends Ecol. Evol. 18:292–298.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Italia

About this chapter

Cite this chapter

Bailly, X., Vinogradov, S.N. (2008). The Bilatarian Sea Urchin and the Radial Starlet Sea Anemone Globins Share Strong Homologies with Vertebrate Neuroglobins. In: Bolognesi, M., di Prisco, G., Verde, C. (eds) Dioxygen Binding and Sensing Proteins. Protein Reviews, vol 9. Springer, Milano. https://doi.org/10.1007/978-88-470-0807-6_16

Download citation

Publish with us

Policies and ethics