Advertisement

Myoglobin Strikes Back

  • Maurizio Brunori
Part of the Protein Reviews book series (PRON, volume 9)

Abstract

The biochemical and physiological role of myoglobin is briefly reviewed with reference to the seminal work by Wittenberg and Wittenberg. The function of myoglobin as a NO scavenger in the skeletal muscle and the heart was found to protect cellular respiration, which is known to depend on inhibition of cytochrome-c-oxidase.

Keywords

Nitric Oxide Paracoccus Denitrificans Intermediate Oxidation State Binuclear Centre Isolate Mouse Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bates, T.E., Loesch, A., Burnstock, G., and Clark, J. B. 1995. Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver. Biochem. Biophys. Res. Commun. 213:896–900.PubMedCrossRefGoogle Scholar
  2. Bredt, D.S., and Snyder, S.H. 1994. Nitric oxide: a physiologic messenger molecule. Annu. Rev. Biochem. 63:175–195.PubMedCrossRefGoogle Scholar
  3. Brown, G.C. 1995. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 369:136–139.PubMedCrossRefGoogle Scholar
  4. Brown, G.C., and Cooper, C.E. 1994. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 356:295–298.PubMedCrossRefGoogle Scholar
  5. Brunori, M. 2001a. Nitric oxide, cytochrome-c oxidase and myoglobin. Trends Biochem. Sci. 26:21–23.PubMedCrossRefGoogle Scholar
  6. Brunori, M. 2001b. Nitric oxide moves myoglobin centre stage. Trends Biochem. Sci. 26:209–210.PubMedCrossRefGoogle Scholar
  7. Brunori, M., Forte, E., Arese, M., Mastronicola, D., Giuffre, A., and Sarti P. 2006. Nitric oxide and the respiratory enzyme. Biochim. Biophys. Acta 1757:1144–1154.PubMedCrossRefGoogle Scholar
  8. Brunori, M., and Vallone, B. 2006. A globin for the brain. FASEB J. 20:2192–2197.PubMedCrossRefGoogle Scholar
  9. Burmester, T., Weich, B., Reinhardt, S., and Hankein, T. 2000. A vertebrate globin expressed in the brain. Nature 407:520–523.PubMedCrossRefGoogle Scholar
  10. Carr, G.J., and Ferguson, S.J. 1990. Nitric oxide formed by nitrite reductase of Paracoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions. Biochim. Biophys. Acta 1017:57–62.PubMedCrossRefGoogle Scholar
  11. Chen, W., Zheng, J., Eljgelshoven, M. H., Zhang, Y., Zhu, X. H., Wang, C., Cho, Y., Merkle, H., and Ugurbie, K. 1997. Determination of deoxy myoglobin changes during graded myocardial ischemia: an in vivo H-NMR spectroscopy study. Magn. Reson. Med. 38:193–197.PubMedCrossRefGoogle Scholar
  12. Cleeter, M. W., Cooper, J. M., Darley-Usmar, V. M., Moncada, S., and Schapira, A. H. 1994. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 345:50–54.PubMedCrossRefGoogle Scholar
  13. Eich, R. F., Li, T., Lemon, D. D., Doherty, D. H., Curry, S. R., Altken, J. F., Mathews, A. J., Johnson, K. A., Smith, R. D., Phillips, G. N. Jr, Olson, J. S. 1996. Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry 35:6976–6983.PubMedCrossRefGoogle Scholar
  14. Flögel, U., Merx, M. W., Gödecke, A., Decking, U. K. M.., and Schrader, J. 2001. Myoglobin: a scavenger of bioactive NO. Proc. Natl. Acad. Sci. U.S.A. 98:735–740.PubMedCrossRefGoogle Scholar
  15. Garry, D.J., Ordway, G. A., Lorenz, J. N., Radford, N. B., Chin, E. R., Grange, R. W., Bassel-Duby, R., and Williams, R. S. 1998. Mice without myoglobin. Nature 395:905–908.PubMedCrossRefGoogle Scholar
  16. Ghafourifar, P., and Richter, C. 1997. Nitric oxide synthase activity in mitochondria. FEBS Lett. 418:291–296.PubMedCrossRefGoogle Scholar
  17. Giuffrè, A., Sarti, P., D’Itri, E., Buse, G., Soulimane, T., and Brunori, M. 1999. On the mechanism of inhibition of cytochrome c oxidase by nitric oxide. J. Biol. Chem. 271:33404–33408.Google Scholar
  18. Glabe, A., Chung, Y., Xu, D., and Jue, T. 1998. Carbon monoxide inhibition of regulatory pathways in myocardium. Am. J. Physiol 234:H2143–H2151.Google Scholar
  19. Gödecke, A., Flögel, U., Zanger, K., Ding, Z., Hirchenhain, J., Decking, U. K. M, and Schrader, J. 1999. Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proc. Natl. Acad. Sci. U.S.A. 96:10495–10500.PubMedCrossRefGoogle Scholar
  20. Ignarro, L.J., Buga, G. M., Wood, K. S., Byrns, R. E., and Chaudhuri, G. 1987. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. U. S. A. 84:9265–9269.PubMedCrossRefGoogle Scholar
  21. Mason, M.G., Nicholls, P., Wilson, M. T., and Cooper, C. E. 2006. Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc. Natl. Acad. Sci. U. S. A. 103:708–713.PubMedCrossRefGoogle Scholar
  22. Palmer, R.M., Ferrige, A.G., and Moncada, S. 1987. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526.PubMedCrossRefGoogle Scholar
  23. Persichini, T., Mazzone, V., Polticelli, F., Moreno, S., Venturini, G., Clementi, E., and Colasanti, M. 2005. Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neurosci. Lett. 384:254–295.PubMedCrossRefGoogle Scholar
  24. Sarti, P., Giuffre, A., Barone, M. C., Forte, E., Mastronicola, D., and Brunori, M. 2003. Nitric oxide and cytochrome oxidase: reaction mechanism from the enzyme to the cell. Free Radic. Biol. Med. 34:509–520.PubMedCrossRefGoogle Scholar
  25. Scholander, P.F. 1960. Oxygen transport through hemoglobin solutions. Science 131:585–590.PubMedCrossRefGoogle Scholar
  26. Tatoyan, A., and Giulivi, C. 1998. Purification and characterization of a nitric oxide synthase from rat liver mitochondrial. J. Biol. Chem. 273:11044–11048.PubMedCrossRefGoogle Scholar
  27. Torres, J., Cooper, C.E., and Wilson, M.T. 1998. A common mechanism for the interaction of nitric oxide with the oxidized binuclear centre and oxygen intermediates of cytochrome c oxidase. J. Biol. Chem. 273:8756–8766.PubMedCrossRefGoogle Scholar
  28. Torres, J., Darley-Usmar, V., and Wilson, M.T. 1995. Inhibition of cytochrome c oxidase in turnover by nitric oxide: mechanism and implications for control of respiration. Biochem. J. 312:169–173.PubMedGoogle Scholar
  29. Wittenberg, B.A., and Wittenberg, J.B. 1987. Myoglobin-mediated oxygen delivery to mitochondria of isolated cardiac myocytes. Proc. Natl. Acad. Sci. U.S.A. 84:7503–7507.PubMedCrossRefGoogle Scholar
  30. Wittenberg, J.B, and Wittenberg, B.A. 2003. Myoglobin function reassessed. J. Exp. Biol. 206:2011–2020.PubMedCrossRefGoogle Scholar
  31. Wittenberg, J.B. 1959. Oxygen transport: a new function proposed for myoglobin. Biol. Bull. 117:402–403.Google Scholar
  32. Wittenberg, J.B. 1963. Facilitated diffusion of oxygen through haemerythrin solutions. Nature 199:816–817.PubMedCrossRefGoogle Scholar
  33. Wittenberg, J.B. 1966. The molecular mechanism of hemoglobin-facilitated oxygen diffusion. J. Biol. Chem. 241:104–114.PubMedGoogle Scholar
  34. Wyman, J. 1966. Facilitated diffusion and the possible role of myoglobin as a transport mechanism. J. Biol. Chem. 241:115–121.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Maurizio Brunori
    • 1
  1. 1.Department of Biochemical SciencesUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations