From O2 Diffusion into Red Blood Cells to Ligand Pathways in Globins

  • John S. Olson
Part of the Protein Reviews book series (PRON, volume 9)


Jonathan and Beatrice Wittenberg have had a strong influence on much of the work done in my laboratory over the past 35 years, both indirectly through their papers and more directly through conversations and collaborations. I began reading their papers on facilitated diffusion of O2 by myoglobin (Wittemberg 1965; 1970; Riveros-Moreno and Wittenberg 1972), gas exchange in fish swim bladders (Wittenberg 1958; 1961; Wittenberg and Wittenberg 1961; Wittenberg et al. 1964) and ligand binding to leghaemoglobin (Wittenberg et al. 1972) when I was a graduate student in Quentin Gibson’s laboratory between 1968 and 1972. Then, as an independent investigator, I became involved in a number of studies, which built on their discoveries about the role of globins in O2 storage, transport, sensing and scavenging. Four of these projects are summarised in this chapter and were chosen because of the strong influence of the Wittenbergs’ work and are presented in a tribute to them and to their ideas. These studies include: (1) a demonstration that O2 uptake and release by intact red blood cells is limited by diffusion through unstirred surface layers; (2) an evaluation of the factors governing sulphide binding to Lucina pectinata HbI; (3) a comparison of symbiotic and non-symbiotic plant haemoglobins; and (4) an experimental verification that O2 enters and exits Cerebratulus lacteus Hb through an internal apolar channel.


Sperm Whale Unstirred Layer Distal Histidine Distal Pocket Ligand Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appleby, C. A. 1962. The oxygen equilibrium of leghemoglobin. Biochim. Biophys. Acta 60:226–235.PubMedCrossRefGoogle Scholar
  2. Appleby, C. A., Blumberg, W. E., Peisach, J., Wittenberg, B. A., and Wittenberg, J. B. 1976. Leghemoglobin. An electron paramagnetic resonance and optical spectral study of the free protein and its complexes with nicotinate and acetate. J. Biol. Chem. 251:6090–6096.PubMedGoogle Scholar
  3. Appleby, C. A., Bradbury, J. H., Morris, R. J., Wittenberg, B. A., Wittenberg, J. B., and Wright, P. E. 1983. Leghemoglobin. Kinetic, nuclear magnetic resonance, and optical studies of pH dependence of oxygen and carbon monoxide binding. J. Biol. Chem. 258:2254–2259.PubMedGoogle Scholar
  4. Appleby, C. A., Wittenberg, B. A., and Wittenberg, J. B. 1973a. Leghemoglobin. II. Changes in conformation and chemical reactivity linked to reaction with a dissociable low molecular weight ligand, X. J. Biol. Chem. 248:3183–3187.Google Scholar
  5. Appleby, C. A., Wittenberg, B. A., and Wittenberg, J. B. 1973b. Nicotinic acid as a ligand affecting leghemoglobin structure and oxygen reactivity. Proc. Natl. Acad. Sci. USA 70:564–568.PubMedCrossRefGoogle Scholar
  6. Arrendondo-Peter, R., Hargrove, M. S., Sarath, G., Moran, J. F., Lohrman, J., Olson, J. S., and Klucas, R. V. 1997. Rice hemoglobins. Gene cloning, analysis, and O2-binding kinetics of a recombinant protein synthesized in Escherichia coli. Plant Physiol. 115:1259–1266.CrossRefGoogle Scholar
  7. Ascenzi, P., Bocedi, A., Bolognesi, M., Fabozzi, G., Milani, M., and Visca, P. 2006. Nitric oxide scavenging by Mycobacterium leprae GlbO involves the formation of the ferric heme-bound peroxynitrite intermediate. Biochem. Biophys. Res. Commun. 339:450–456.PubMedCrossRefGoogle Scholar
  8. Atkins, P.W. 1990. Dynamic electrochemistry. In Physical chemistry (4th Edition), Chapter 30, p. 918. New York: W. H. Freeman and Company.Google Scholar
  9. Baxley, P. T., and Heliums, J. D. 1983. A simple model for simulation of oxygen transport in the microcirculation. Ann. Biomed. Eng. 11:401–416.PubMedCrossRefGoogle Scholar
  10. Boland, E. J., Nair, P. K., Lemon, D. D., Olson, J. S., and Heliums, J. D. 1987. An in vitro capillary system for studies on microcirculatory O2 transport. J. Appl. Physiol. 62:791–797.PubMedGoogle Scholar
  11. Bolognesi, M., Rosano, C., Losso, R., Borassi, A., Rizzi, M., Wittenberg, J. B., Boffi, A., and Ascenzi, P. 1999. Cyanide binding to Lucina pectinata hemoglobin I and to sperm whale myoglobin: an x-ray crystallographic study. Biophys. J. 77:1093–1099.PubMedCrossRefGoogle Scholar
  12. Coin, J. T., and Olson, J. S. 1979. The rate of oxygen uptake by human red blood cells. J. Biol. Chem. 254:1178–1190.PubMedGoogle Scholar
  13. Cole, R. P., Sukanek, P. C., Wittenberg, J. B., and Wittenberg, B. A. 1982. Mitochondrial function in the presence of myoglobin. J. Appl. Physiol. 53:1116–1124.PubMedGoogle Scholar
  14. de Sanctis, D., Dewilde, S., Pesce, A., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., and Bolognesi, M. 2004. Mapping protein matrix cavities in human cytoglobin through Xe atom binding. Biochem. Biophys. Res. Commun. 316:1217–1221.PubMedCrossRefGoogle Scholar
  15. Deng, P., Nienhaus, K., Palladino, P., Olson, J. S., Blouin, G., Moens, L., Dewilde, S., Geuens, E., and Nienhaus, G. U. 2007. Transient ligand docking sites in Cerebratulus lacteus mini-hemoglobin. Gene 398:208–223.PubMedCrossRefGoogle Scholar
  16. Doherty, D. H., Doyle, M. P., Curry, S. R., Vali, R. J., Fattor, T. J., Olson, J. S., and Lemon, D. D. 1998. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat. Biotechnol. 16:672–676.PubMedCrossRefGoogle Scholar
  17. Dou, Y., Maillett, D. H., Eich, R. F., and Olson, J. S. 2002. Myoglobin as a model system for designing heme protein based blood substitutes. Biophys. Chem. 98:127–148.PubMedCrossRefGoogle Scholar
  18. Duff, S. M., Wittenberg, J. B., and Hill, R. D. 1997. Expression, purification, and properties of recombinant barley (Hordeum sp.) hemoglobin. Optical spectra and reactions with gaseous ligands. J. Biol. Chem. 272:16746–16752.PubMedCrossRefGoogle Scholar
  19. Eich, R. F., Li, T., Lemon, D. D., Doherty, D. H., Curry, S. R., Aitken, J. F., Mathews, A. J., Johnson, K. A., Smith, R. D., Phillips, G. N., Jr., et al. 1996. Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry 35:6976–6983.PubMedCrossRefGoogle Scholar
  20. Fahraeus, R. 1929. The suspension stability of the blood. Physiol. Rev. 9:353–373.Google Scholar
  21. Franzen, S. 2002. An electrostatic model for the frequency shifts in the carbonmonoxy stretching band of myoglobin: Correlation of hydrogen bonding and the stark tuning rate. J. Am. Chem. Soc. 124:13271–13281.PubMedCrossRefGoogle Scholar
  22. Gibson, Q. H., Kreuzer, F., Meda, E., and Roughton, F. J. 1955. The kinetics of human haemoglobin in solution and in the red cell at 37 degrees C. J. Physiol. 129:65–89.PubMedGoogle Scholar
  23. Gibson, Q. H., Wittenberg, J. B., Wittenberg, B. A., Bogusz, D., and Appleby, C. A. 1989. The kinetics of ligand binding to plant hemoglobins. Structural implications. J. Biol. Chem. 264:100–107.PubMedGoogle Scholar
  24. Gladwin, M. T., Ognibene, F. P., Pannell, L. K., Nichols, J. S., Pease-Fye, M. E., Shelhamer, J. H., and Schechter, A. N. 2000. Relative role of heme nitrosylation and beta-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc. Natl. Acad. Sci. USA 97:9943–9948.PubMedCrossRefGoogle Scholar
  25. Hargrove, M. S., Barry, J. K., Brucker, E. A., Berry, M. B., Phillips, G. N., Jr., Olson, J. S., Arredondo-Peter, R., Dean, J. M., Klucas, R. V., and Sarath, G. 1997. Characterization of recombinant soybean leghemoglobin a and apolar distal histidine mutants. J. Mol. Biol. 266:1032–1042.PubMedCrossRefGoogle Scholar
  26. Hargrove, M. S., Brucker, E. A., Stec, B., Sarath, G., Arredondo-Peter, R., Klucas, R. V., Olson, J. S., and Phillips, G. N., Jr. 2000. Crystal structure of a nonsymbiotic plant hemoglobin. Structure (Camb) 8:1005–1014.CrossRefGoogle Scholar
  27. Hartridge, H., and Roughton, F. J. 1927. The rate of distribution of dissolved gases between the red blood corpuscle and its fluid environment: Part I. Preliminary experiments on the rate of uptake of oxygen and carbon monoxide by sheep’s corpuscles. J. Physiol. 62:232–242.PubMedGoogle Scholar
  28. Holland, R.A., and Forster, R.E. 1966. The effect of size of red cells on the kinetics of their oxygen uptake. J. Gen. Physiol. 49:727–742.PubMedCrossRefGoogle Scholar
  29. Hoy, J. A., Robinson, H., Trent, J. T., 3rd, Kakar, S., Smagghe, B. J., and Hargrove, M. S. 2007. Plant hemoglobins: A molecular fossil record for the evolution of oxygen transport. J. Mol. Biol. 371:168–179.PubMedCrossRefGoogle Scholar
  30. Kraus, D. W., and Wittenberg, J. B. 1990. Hemoglobins of the Lucina pectinatci/bacteria. symbiosis. I. Molecular properties, kinetics and equilibria of reactions with ligands. J. Biol. Chem. 265:16043–16053.PubMedGoogle Scholar
  31. Kraus, D. W., Wittenberg, J. B., Lu, J. F., and Peisach, J. 1990. Hemoglobins of the Lucina pectinata/bacteria symbiosis. II. An electron paramagnetic resonance and optical spectral study of the ferric proteins. J. Biol. Chem. 265:16054–16059.PubMedGoogle Scholar
  32. Kreuzer, F. 1970. Facilitated diffusion of oxygen and its possible significance; a review. Respir. Physiol. 9:1–30.PubMedCrossRefGoogle Scholar
  33. Kreuzer, F., and Yahr, W. Z. 1960. Influence of red cell membrane on diffusion of oxygen. J. Appl. Physiol. 15:1117–1122.PubMedGoogle Scholar
  34. Kundu, S., Blouin, G. C., Premer, S. A., Sarath, G., Olson, J. S., and Hargrove, M. S. 2004. Tyrosine B10 inhibits stabilization of bound carbon monoxide and oxygen in soybean leghemoglobin. Biochemistry 43:6241–6252.PubMedCrossRefGoogle Scholar
  35. Kundu, S., Snyder, B., Das, K., Chowdhury, P., Park, J., Petrich, J. W., and Hargrove, M. S. 2002. The leghemoglobin proximal heme pocket directs oxygen dissociation and stabilizes bound heme. Proteins 46:268–277.PubMedCrossRefGoogle Scholar
  36. Kundu, S., Trent, J. T., 3rd, and Hargrove, M. S. 2003. Plants, humans and hemoglobins. Trends Plant Sci. 8:387–393.PubMedCrossRefGoogle Scholar
  37. Kutchai, H. 1970. Numerical study of oxygen uptake by layers of hemoglobin solution. Respir. Physiol. 10:273–284.PubMedCrossRefGoogle Scholar
  38. Kutchai, H. 1975. Role of the red cell membrane in oxygen uptake. Respir. Physiol. 23:121–132.PubMedCrossRefGoogle Scholar
  39. Lemon, D. D., Nair, P. K., Boland, E. J., Olson, J. S., and Heliums, J. D. 1987. Physiological factors affecting O2 transport by hemoglobin in an in vitro capillary system. J. Appl. Physiol. 62:798–806.PubMedGoogle Scholar
  40. Liao, J. C., Hein, T. W., Vaughn, M. W., Huang, K. T., and Kuo, L. 1999. Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc. Natl. Acad. Sci. USA 96:8757–8761.PubMedCrossRefGoogle Scholar
  41. Liong, E. C., Dou, Y., Scott, E. E., Olson, J. S., and Phillips, G. N., Jr. 2001. Waterproofing the heme pocket. Role of proximal amino acid side chains in preventing hemin loss from myoglobin. J. Biol. Chem. 276:9093–9100.PubMedCrossRefGoogle Scholar
  42. Liu, X., Miller, M. J. S., Joshi, M. S., Krowicka, H. S., Clark, D. A., and Lancaster, J. R., Jr. 1998. Diffusion-limited reaction of free nitric oxide with erythrocytes. J. Biol. Chem. 273:18709–18713.PubMedCrossRefGoogle Scholar
  43. Liu, X., Samouilov, A., Lancaster, J. R., Jr., and Zweier, J. L. 2002. Nitric oxide uptake by erythrocytes is primarily limited by extracellular diffusion not membrane resistance. J. Biol. Chem. 277:26194–26199.PubMedCrossRefGoogle Scholar
  44. Marti, M. A., Capece, L., Bikiel, D. E., Falcone, B., and Estrin, D. A. 2007. Oxygen affinity controlled by dynamical distal conformations: the soybean leghemoglobin and the Paramecium caudatum hemoglobin cases. Proteins 68:480–487.PubMedCrossRefGoogle Scholar
  45. Milani, M., Pesce, A., Nardini, M., Ouellet, H., Ouellet, Y., Dewilde, S., Bocedi, A., Ascenzi, P., Guertin, M., Moens, L., et al. 2005. Structural bases for heme binding and diatomic ligand recognition in truncated hemoglobins. J. Inorg. Biochem. 99:97–109.PubMedCrossRefGoogle Scholar
  46. Milani, M., Pesce, A., Ouellet, Y., Ascenzi, P., Guertin, M., and Bolognesi, M. 2001. Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme. EMBO J. 20:3902–3909.PubMedCrossRefGoogle Scholar
  47. Milani, M., Pesce, A., Ouellet, Y., Dewilde, S., Friedman, J., Ascenzi, P., Guertin, M., and Bolognesi, M. 2004. Heme-ligand tunneling in group I truncated hemoglobins. J. Biol. Chem. 279:21520–21525.PubMedCrossRefGoogle Scholar
  48. Moll, W. 1969. Measurements of facilitated diffusion of oxygen in red blood cells at 37 degrees centigrade. Pflugers Arch. 305:269–278.PubMedCrossRefGoogle Scholar
  49. Nardini, M., Pesce, A., Labarre, M., Richard, C., Bolli, A., Ascenzi, P., Guertin, M., and Bolognesi, M. 2006. Structural determinants in the group III truncated hemoglobin from Campylobacter jejuni. J. Biol. Chem. 281:37803–37812.PubMedCrossRefGoogle Scholar
  50. Nguyen, B. D., Zhao, X., Vyas, K., La Mar, G. N., Lile, R. A., Brucker, E. A., Phillips, G. N., Jr., Olson, J. S., and Wittenberg, J. B. 1998. Solution and crystal structures of a sperm whale myoglobin triple mutant that mimics the sulfide-binding hemoglobin from Lucina pectinata. J. Biol. Chem. 273:9517–9526.PubMedCrossRefGoogle Scholar
  51. Nicolson, P., and Roughton, F. J. 1951. A theoretical study of the influence of diffusion and chemical reaction velocity on the rate of exchange of carbon monoxide and oxygen between the red blood corpuscle and the surrounding fluid. Proc. R. Soc. Lond. B Biol. Sci. 138:241–264.PubMedGoogle Scholar
  52. Olson, J. S., Foley, E. W., Rogge, C., Tsai, A. L., Doyle, M. P., and Lemon, D. D. 2004. NO scavenging and the hypertensive effect of hemoglobin-based blood substitutes. Free Radic. Biol. Med. 36:685–697.PubMedCrossRefGoogle Scholar
  53. Olson, J. S., and Phillips, G. N., Jr. 1997. Myoglobin discriminates between O2, NO, and CO by electrostatic interactions with the bound ligand. J. Biol. Inorg. Chem. 2:544–552.CrossRefGoogle Scholar
  54. Olson, J. S., Soman, J., and Phillips, G. N., Jr. 2007. Ligand pathways in myoglobin: a review of Trp cavity mutations. IUBMB Life 59:552–562.PubMedCrossRefGoogle Scholar
  55. Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., and Guertin, M. 2002. Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc. Natl. Acad. Sci. USA 99:5902–5907.PubMedCrossRefGoogle Scholar
  56. Page, T. C. 1997. Oxygen transport by hemoglobin-based blood substitutes. Ph.D. Dissertation, Rice University, Houston, TX.Google Scholar
  57. Page, T. C., Light, W. R., and Heliums, J. D. 1998. Prediction of microcirculatory oxygen transport by erythrocyte/hemoglobin solution mixtures. Microvasc. Res. 56:113–126.PubMedCrossRefGoogle Scholar
  58. Page, T. C, Light, W. R., and Heliums, J. D. 1999. Oxygen transport in 10 microns artificial capillaries. Adv. Exp. Med. Biol. 471:715–721.PubMedGoogle Scholar
  59. Page, T. C., Light, W. R., McKay, C. B., and Heliums, J. D. 1998. Oxygen transport by erythrocyte/hemoglobin solution mixtures in an in vitro capillary as a model of hemoglobin-based oxygen carrier performance. Microvasc. Res. 55:54–64.PubMedCrossRefGoogle Scholar
  60. Park, E. S., and Boxer, S. G. 2002. Origins of the sensitivity of molecular vibrations to electric fields: Carbonyl and nitrosyl stretches in model compounds and proteins. J. Phys. Chem. B 106:5800–5806.CrossRefGoogle Scholar
  61. Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., and Bolognesi, M. 2000. A novel two-over-two alpha-helical sandwich fold is characteristic of the truncated hemoglobin family. EMBO J. 19:2424–2434.PubMedCrossRefGoogle Scholar
  62. Pesce, A., Nardini, M., Ascenzi, P., Geuens, E., Dewilde, S., Moens, L., Bolognesi, M., Riggs, A. F., Hale, A., Deng, P., et al. 2004. ThrEll regulates O2 affinity in Cerebratulus lacteus mini-hemoglobin. J. Biol. Chem., in press.Google Scholar
  63. Pesce, A., Nardini, M., Dewilde, S., Geuens, E., Yamauchi, K., Ascenzi, P., Riggs, A.F., Moens, L., and Bolognesi, M. 2002. The 109 residue nerve tissue minihemoglobin from Cerebratulus lacteus highlights striking structural plasticity of the alpha-helical globin fold. Structure 10:725–735.PubMedCrossRefGoogle Scholar
  64. Phillips, G. N., Jr., Teodoro, M., Li, T., Smith, B., Gilson, M. M., and Olson, J. S. 1999. Bound CO is a molecular probe of electrostatic potential in the distal pocket of myoglobin. J. Phys. Chem. B 103:8817–8829.CrossRefGoogle Scholar
  65. Reiter, C. D., Wang, X., Tanus-Santos, J. E., Hogg, N., Cannon, R. O., 3rd, Schechter, A. N., and Gladwin, M. T. 2002. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat. Med. 8:1383–1389.PubMedCrossRefGoogle Scholar
  66. Riveros-Moreno, V., and Wittenberg, J. B. 1972. The self-diffusion coefficients of myoglobin and hemoglobin in concentrated solutions. J. Biol. Chem. 247:895–901.PubMedGoogle Scholar
  67. Rizzi, M., Wittenberg, J. B., Coda, A., Ascenzi, P., and Bolognesi, M. 1996. Structural bases for sulfide recognition in Lucina pectinata hemoglobin I. J. Mol. Biol. 258:1–5.PubMedCrossRefGoogle Scholar
  68. Rizzi, M., Wittenberg, J. B., Coda, A., Fasano, M., Ascenzi, P., and Bolognesi, M. 1994. Structure of the sulfide-reactive hemoglobin from the clam Lucina pectinata. Crystallographic analysis at 1.5 A resolution. J. Mol. Biol. 244:86–99.PubMedCrossRefGoogle Scholar
  69. Roughton, F. J. 1963. Kinetics of gas transport in the blood. Br. Med. Bull. 19:80–89.PubMedGoogle Scholar
  70. Schmidt, M., Nienhaus, K., Pahl, R., Krasselt, A., Anderson, S., Parak, F., Nienhaus, G. U., and Srajer, V. 2005. Ligand migration pathway and protein dynamics in myoglobin: A time-resolved crystallographic study on L29W MbCO. Proc. Natl. Acad. Sci. USA 102:11704–11709.PubMedCrossRefGoogle Scholar
  71. Schotte, F., Soman, J., Olson, J. S., Wulff, M., and Anfinrud, P. A. 2004. Picosecond time-resolved X-ray crystallography: Probing protein function in real time. J. Struct. Biol. 147:235–246.PubMedCrossRefGoogle Scholar
  72. Scott, E. E., Gibson, Q. H., and Olson, J. S. 2001. Mapping the pathways for O2 entry into and exit from myoglobin. J. Biol. Chem. 276:5177–5188.PubMedCrossRefGoogle Scholar
  73. Sirs, J. A., and Roughton, F. J. 1963. Stopped-flow measurements of CO and O2 uptake by hemoglobin in sheep erythrocytes. J. Appl. Physiol. 18:158–165.PubMedGoogle Scholar
  74. Spiro, T. G., and Kozlowski, P. M. 2001. Is the CO adduct of myoglobin bent, and does it matter? Acc. Chem. Res. 34:137–144.PubMedCrossRefGoogle Scholar
  75. Srajer, V., Ren, Z., Teng, T. Y., Schmidt, M., Ursby, T., Bourgeois, D., Pradervand, C., Schildkamp, W., Wulff, M., and Moffat, K. 2001. Protein conformational relaxation and ligand migration in myoglobin: a nanosecond to millisecond molecular movie from time-resolved Laue X-ray diffraction. Biochemistry 40:13802–13815.PubMedCrossRefGoogle Scholar
  76. Trent, J. T., 3rd, Hvitved, A. N., and Hargrove, M. S. 2001. A model for ligand binding to hexacoordinate hemoglobins. Biochemistry 40:6155–6163.PubMedCrossRefGoogle Scholar
  77. Trevaskis, B., Watts, R. A., Andersson, C. R., Llewellyn, D. J., Hargrove, M. S., Olson, J. S., Dennis, E. S., and Peacock, W. J. 1997. Two hemoglobin genes in Arabidopsis thaliana: The evolutionary origins of leghemoglobins. Proc. Natl. Acad. Sci. USA 94:12230–12234.PubMedCrossRefGoogle Scholar
  78. Vandegriff, K. D., and Olson, J.S. 1984a. A quantitative description in three dimensions of oxygen uptake by human red blood cells. Biophys. J. 45:825–835.PubMedGoogle Scholar
  79. Vandegriff, K. D., and Olson, J. S. 1984b. Morphological and physiological factors affecting oxygen uptake and release by red blood cells. J. Biol. Chem. 259:12619–12627.PubMedGoogle Scholar
  80. Vandegriff, K. D., and Olson, J. S. 1984c. The kinetics of O2 release by human red blood cells in the presence of external sodium dithionite. J. Biol. Chem. 259:12609–12618.PubMedGoogle Scholar
  81. Vandergon, T. L., Riggs, C. K., Gorr, T. A., Colacino, J. M., and Riggs, A. F. 1998. The mini-hemoglobins in neural and body wall tissue of the nemertean worm, Cerebratulus lacteus. J. Biol. Chem. 273:16998–17011.PubMedCrossRefGoogle Scholar
  82. Visca, P., Fabozzi, G., Petrucca, A., Ciaccio, C., Coletta, M., De Sanctis, G., Bolognesi, M., Milani, M., and Ascenzi, P. 2002. The truncated hemoglobin from Mycobacterium leprae. Biochem. Biophys. Res. Commun. 294:1064–1070.PubMedCrossRefGoogle Scholar
  83. Wittenberg, B. A., and Wittenberg, J. B. 1987. Myoglobin-mediated oxygen delivery to mitochondria of isolated cardiac myocytes. Proc. Natl. Acad. Sci. USA 84:7503–7507.PubMedCrossRefGoogle Scholar
  84. Wittenberg, B. A., and Wittenberg, J. B. 1993. Effects of carbon monoxide on isolated heart muscle cells. Res. Rep. Health Eff. Inst. 1–12; discussion 13–21.Google Scholar
  85. Wittenberg, B. A., Wittenberg, J. B., and Appleby, C. A. 1973. Leghemoglobin. I. Changes in conformation and chemical reactivity linked to reaction with acetic acid. J. Biol. Chem. 248:3178–3182.PubMedGoogle Scholar
  86. Wittenberg, B. A., Wittenberg, J. B., and Caldwell, P. R. 1975. Role of myoglobin in the oxygen supply to red skeletal muscle. J. Biol. Chem. 250:9038–9043.PubMedGoogle Scholar
  87. Wittenberg, J. B. 1958. The secretion of inert gas into the swim-bladder of fish. J. Gen. Physiol. 41:783–804.PubMedCrossRefGoogle Scholar
  88. Wittenberg, J. B. 1961. The secretion of oxygen into the swimbladder of fish. I. The transport of molecular oxygen. J. Gen. Physiol. 44:521–526.PubMedCrossRefGoogle Scholar
  89. Wittenberg, J. B. 1965. Myoglobin-facilitated diffusion of oxygen. J. Gen. Physiol. 49(Suppl):57–74.PubMedGoogle Scholar
  90. Wittenberg, J. B. 1966. The molecular mechanism of hemoglobin-facilitated oxygen diffusion. J. Biol. Chem. 241:104–114.PubMedGoogle Scholar
  91. Wittenberg, J. B. 1970. Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol. Rev. 50:559–636.PubMedGoogle Scholar
  92. Wittenberg, J. B. 2007. On optima: The case of myoglobin-facilitated oxygen diffusion. Gene 398:156–161.PubMedCrossRefGoogle Scholar
  93. Wittenberg, J. B., Appleby, C. A., Bergersen, F. J., and Turner, G. L. 1975. Leghemoglobin: the role of hemoglobin in the nitrogen-fixing legume root nodule. Ann. NY Acad. Sci. 244:28–34.PubMedCrossRefGoogle Scholar
  94. Wittenberg, J. B., Appleby, C. A., and Wittenberg, B. A. 1972. The kinetics of the reactions of leghemoglobin with oxygen and carbon monoxide. J. Biol. Chem. 247:527–531.PubMedGoogle Scholar
  95. Wittenberg, J. B., Bolognesi, M., Wittenberg, B. A., and Guertin, M. 2002. Truncated hemoglobins: A new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J. Biol. Chem. 277:871–874.PubMedCrossRefGoogle Scholar
  96. Wittenberg, J. B., Brown, P. K., and Wittenberg, B. A. 1965. A novel reaction of hemoglobin in invertebrate nerves. I. Observations on annelid and molluscan nerves. Biochim. Biophys. Acta 109:518–529.PubMedCrossRefGoogle Scholar
  97. Wittenberg, J. B., Schwend, M. J., and Wittenberg, B. A. 1964. The secretion of oxygen into the swim-bladder of fish. 3. The role of carbon dioxide. J. Gen. Physiol. 48:337–355.PubMedCrossRefGoogle Scholar
  98. Wittenberg, J. B., and Wittenberg, B. A. 1961. The secretion of oxygen into the swim-bladder offish. II. The simultaneous transport of carbon monoxide and oxygen. J. Gen. Physiol. 44:527–542.PubMedCrossRefGoogle Scholar
  99. Wittenberg, J. B., and Wittenberg, B. A. 2003. Myoglobin function reassessed. J. Exp. Biol. 206:2011–2020.PubMedCrossRefGoogle Scholar
  100. Wittenberg, J. B., and Wittenberg, B. A. 2007. Myoglobin-enhanced oxygen delivery to isolated cardiac mitochondria. J. Exp. Biol. 210:2082–2090.PubMedCrossRefGoogle Scholar
  101. Wittenberg, J. B., Wittenberg, B. A., Gibson, Q. H., Trinick, M. J., and Appleby, C. A. 1986. The kinetics of the reactions of Parasponia andersonii hemoglobin with oxygen, carbon monoxide, and nitric oxide. J. Biol. Chem. 261:13624–13631.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • John S. Olson
    • 1
    • 2
  1. 1.Department of Biochemistry and Cell BiologyHoustonUSA
  2. 2.Keck Center for Structural and Computational BiologyRice UniversityHoustonUSA

Personalised recommendations