T- and R-state Tertiary Relaxations in Sol-gel Encapsulated Haemoglobin

  • Uri Samuni
  • Camille J. Roche
  • David Dantsker
  • Joel M. Friedman
Part of the Protein Reviews book series (PRON, volume 9)


Tertiary relaxations within the T and R quaternary states of human adult haemoglobin (HbA) are compared for sol-gel encapsulated samples bathed in buffer with either 25% or 75% (v/v) glycerol. T-state tertiary relaxations are initiated by adding CO to an encapsulated T-state deoxyHbA sample, thus generating liganded T-state species. The conformational evolution of the liganded T-state samples is followed by monitoring the frequency of v(Fe-His), the conformation-sensitive iron-proximal histidine stretching mode observed in the resonance Raman spectra of either of the deoxy sample of the 7 ns photoproduct derived from the CO samples. In parallel, the functional properties are monitored by following the evolution of the kinetic traces associated with CO recombination subsequent to nanosecond photodissociation of the CO-heme unit. In contrast, the R-state relaxations are initiated by adding dithionite to encapsulated samples of either oxyHbA or cyanometHbA, thus generating deoxy hemes whose resonance Raman spectra reflect the influence of the relaxing tertiary structure within the R state. After the “deoxy” sample is allowed to relax for a defined time period, CO is introduced. The evolution of the relegated samples is now followed by monitoring the photoproduct frequency of the v(Fe-His) Raman band and the kinetic traces for the CO recombination.

The results reveal a hierarchy of R/T-dependent tertiary relaxation processes whose differences can be explained based on differences in solvent slaving properties of the different relaxations. The results also support models of HbA allostery in which there are multiple functionally distinct tertiary conformations with each quaternary state.


Energy Landscape Kinetic Trace Resonance Raman Spectrum Human Hemoglobin Allosteric Effector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbruzetti, S., Viappiani, C., Bruno, S., and Mozzarelli, A. (2001) Enhanced geminate ligand rebinding upon photo-dissociation of silica gel-embedded myoglobin-CO. Chem. Phys. Lett. 346:430–436.CrossRefGoogle Scholar
  2. Abbruzzetti, S., Viappiani, C., Bruno, S., Bettati, S., Bonaccio, M., and Mozzarelli, A. (2001) Functional characterization of heme proteins encapsulated in wet nanoporous silica gels. J. Nanosci. Nanotechnol. 1:407–415.PubMedCrossRefGoogle Scholar
  3. Agmon, N., and Hopfield, J. J (1983) CO binding to heme proteins: A model for barrier height distributions and slow conformational changes. J. Chem. Phys. 79:2042–2053.CrossRefGoogle Scholar
  4. Alpert, B., El Mohsni, S., Lindqvist, L., and Tfibel, F. (1979) Transient effects in the nanosecond laser photolysis of carbonmonoxyhemoglobin: Cage recombination and spectral evolution of the protein. Chem. Phys. Lett. 64:11–16.CrossRefGoogle Scholar
  5. Balakrishnan, G., Case, M. A., Pevsner, A., Zhao, X., Tengroth, C., McLendon, G. L., and Spiro, T. G. (2004) Time-resolved absorption and UV resonance Raman spectra reveal stepwise formation of T quaternary contacts in the allosteric pathway of hemoglobin. J. Mol. Biol. 340:843–856.PubMedCrossRefGoogle Scholar
  6. Bettati, S., and Mozzarelli, A. (1997) T state hemoglobin binds oxygen noncooperatively with allosteric effects of protons, inositol hexaphosphate, and chloride. J. Biol. Chem. 272:32050–32055.PubMedCrossRefGoogle Scholar
  7. Bjorling, S. C., Goldbeck, R. A., Paquette, S. J., Milder, S. J., and Kliger, D. S. (1996) Allosteric intermediates in hemoglobin. 1. Nanosecond time-resolved circular dichroism spectroscopy. Biochemistry 35:8619–8627.PubMedCrossRefGoogle Scholar
  8. Bruno, S., Bonaccio, M., Bettati, S., Rivetti, C., Viappiani, C., Abbruzzetti, S., and Mozzarelli, A. (2001) High and low oxygen affinity conformations of T state hemoglobin. Protein Sci. 10:2401–2407.PubMedCrossRefGoogle Scholar
  9. Dantsker, D., Roche, C., Samuni, U., Blouin, G., Olson, J. S., and Friedman, J. M. (2005a) The position 68(E11) side chain in myoglobin regulates ligand capture, bond formation with heme iron, and internal movement into the xenon cavities. J. Biol. Chem. 280:38740–38755.PubMedCrossRefGoogle Scholar
  10. Dantsker, D., Samuni, U., Friedman, J. M., and Agmon, N. (2005b) A hierarchy of functionally important relaxations within myoglobin based on solvent effects, mutations and kinetic model. Biochim. Biophys. Acta 1749:234–251.PubMedGoogle Scholar
  11. Das, T., Khan, I., Rousseau, D., and Friedman, J. (1999) Temperature dependent quaternary state relaxation in sol-gel encapsulated hemoglobin. Biospectroscopy 5:S64–S70.PubMedCrossRefGoogle Scholar
  12. Doyle, M. L, Lew, G., De Young, A., Kwiatkowski, L., Wierzba, A., Noble, R. W., and Ackers, G. K. (1992) Functional properties of human hemoglobins synthesized from recombinant mutant beta-globins. Biochemistry 31:8629–8639.PubMedCrossRefGoogle Scholar
  13. Duddell, D., Morris, R., and Richards, J. (1979) Ultrafast recombination in nanosecond laser photolysis of carbonylhemoglobin. J. Chem. Soc. Chem. Commun. 2:75–76.CrossRefGoogle Scholar
  14. Esquerra, R. M., Goldbeck, R. A., Reaney, S. H., Batchelder, A. M., Wen, Y., Lewis, J. W., and Kliger, D. S. (2000) Multiple geminate ligand recombinations in human hemoglobin. Biophys. J. 78:3227–3239.PubMedGoogle Scholar
  15. Fenimore, P. W., Frauenfelder, H., McMahon, B. H., and Young, R. D. (2004) Bulk-solvent and hydration-shell fluctuations, similar to alpha-and beta-fluctuations in glasses, control protein motions and functions. Proc. Natl. Acad. Sci. U.S.A. 101:14408–14413.PubMedCrossRefGoogle Scholar
  16. Findsen, E., Friedman, J., Ondrias, M., and Simon, S. (1985) Picosecond time-resolved resonance Raman studies of hemoglobin: implications for reactivity. Science 229:661–665.PubMedCrossRefGoogle Scholar
  17. Findsen, E. W., Friedman, J. M., and Ondrias, M. R. (1988) Effect of solvent viscosity on the heme-pocket dynamics of photolyzed (carbonmonoxy)hemoglobin. Biochemistry 27:8719–8724.PubMedCrossRefGoogle Scholar
  18. Frauenfelder, H., Fenimore, P. W., Chen, G., and McMahon, B. H. (2006) Protein folding is slaved to solvent motions. Proc. Natl. Acad. Sci. U.S.A. 103:15469–15472.PubMedCrossRefGoogle Scholar
  19. Friedman, J. M. (1985) Structure, dynamics, and reactivity in hemoglobin. Science 228:1273–1280.PubMedCrossRefGoogle Scholar
  20. Friedman, J. M. (1994) Time-resolved resonance Raman spectroscopy as probe of structure, dynamics, and reactivity in hemoglobin. Methods Enzymol. 232:205–231.PubMedCrossRefGoogle Scholar
  21. Friedman, J.M., and Lyons, K.B. (1980) Transient Raman study of CO-haemoprotein photolysis: origin of the quantum yield. Nature 284:570–572.PubMedCrossRefGoogle Scholar
  22. Friedman, J. M., Rousseau, D. L., Ondrias, M. R., and Stepnoski, R. A. (1982) Transient Raman study of hemoglobin: structural dependence of the iron-histidine linkage. Science 218:1244–1246.PubMedCrossRefGoogle Scholar
  23. Friedman, J. M., Scott, T. W., Stepnoski, R. A., Ikeda-Saito, M., and Yonetani, T. (1983) The iron-proximal histidine linkage and protein control of oxygen binding in hemoglobin. A transient Raman study. J. Biol. Chem. 258:10564–10572.PubMedGoogle Scholar
  24. Ghelichkhani, E., Goldbeck, R. A., Lewis, J. W., and Kliger, D. S. (1996) Nanosecond time-resolved absorption studies of human oxyhemoglobin photolysis intermediates. Biophys. J. 71:1596–1604.PubMedCrossRefGoogle Scholar
  25. Goldbeck, R. A., Paquette, S. J., and Kliger, D. S. (2001) The effect of water on the rate of conformational change in protein allostery. Biophys. J. 81:2919–2934.PubMedGoogle Scholar
  26. Goldbeck, R. A., Esquerra, R. M., Holt, J. M., Ackers, G. K., and Kliger, D. S. (2004) The molecular code for hemoglobin allostery revealed by linking the thermodynamics and kinetics of quaternary structural change. 1. Microstate linear free energy relations. Biochemistry 43:12048–12064.PubMedCrossRefGoogle Scholar
  27. Henry, E. R., Bettati, S., Hofrichter, J., and Eaton, W. A. (2002) A tertiary two-state allosteric model for hemoglobin. Biophys. Chem. 98:149–164.PubMedCrossRefGoogle Scholar
  28. Hofrichter, J., Sommer, J. H., Henry, E. R., and Eaton, W. A. (1983) Nanosecond absorption spectroscopy of hemoglobin: elementary processes in kinetic cooperativity. Proc. Natl. Acad. Sci. U.S.A. 80:2235–2239.PubMedCrossRefGoogle Scholar
  29. Huang, J., Juszczak, L. J., Peterson, E. S., Shannon, C. F., Yang, M., Huang, S., Vidugiris, G. V. A., and Friedman, J. M. (1999) The conformational and dynamic basis for ligand binding reactivity in hemoglobin Ypsilanti (beta 99 aspTTyr): origin of the quaternary enhancement effect. Biochemistry 38:4514–4525.PubMedCrossRefGoogle Scholar
  30. Imai, K., Tsuneshige, A., and Yonetani, T. (2002) Description of hemoglobin oxygenation under universal solution conditions by a global allostery model with a single adjustable parameter. Biophys Chem 98:79–91.PubMedCrossRefGoogle Scholar
  31. Jayaraman, V., Rodgers, K. R., Mukerji, I., and Spiro, T. G. (1995) Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates. Science 269:1843–1848.PubMedCrossRefGoogle Scholar
  32. Jayaraman, V., and Spiro, T. G. (1995) Structure of a third cooperativity state of hemoglobin: ultraviolet resonance Raman spectroscopy of cyanomethemoglobin ligation microstates. Biochemistry 34:4511–4515.PubMedCrossRefGoogle Scholar
  33. Juszczak, L., and Friedman, J. (1999) UV resonance Raman spectra of ligand binding intermediates of sol-gel encapsulated hemoglobin. J. Biol. Chem. 274:30357–30360.PubMedCrossRefGoogle Scholar
  34. Juszczak, L., Samuni, U., and Friedman, J. M. (2005) Conformational and functional significance of the alpha 140 side-chain in HbA: a UV and visible resonance Raman study of three alphal40 mutants. J. Raman Spectroscopy 36:350–358.CrossRefGoogle Scholar
  35. Kavanaugh, J. S., Chafin, D. R., Arnone, A., Mozzarelli, A., Rivetti, C., Rossi, G. L., Kwiatkowski, L. D., and Noble, R. W. (1995) Structure and oxygen affinity of crystalline desArgl41 alpha human hemoglobin A in the T state. J. Mol. Biol. 248:136–150.PubMedCrossRefGoogle Scholar
  36. Kavanaugh, J. S., Weydert, J. A., Rogers, P. H., and Arnone, A. (1998) High-resolution crystal structures of human hemoglobin with mutations at tryptophan 37beta: structural basis for a high-affinity T-state. Biochemistry 37:4358–4373.PubMedCrossRefGoogle Scholar
  37. Kavanaugh, J. S., Rogers, P. H., and Arnone, A. (2005) Crystallographic evidence for a new ensemble of ligand-induced allosteric transitions in hemoglobin: the T-to-T(high) quaternary transitions. Biochemistry 44:6101–6121.PubMedCrossRefGoogle Scholar
  38. Khan, L, Shannon, C. F., Dantsker, D., Friedman, A. J., Perez-Gonzalez-de-Apodaca, J., and Friedman, J. M. (2000) Sol-gel trapping of functional intermediates of hemoglobin: geminate and bimolecular recombination studies. Biochemistry 39:16099–16109.PubMedCrossRefGoogle Scholar
  39. Khan, I., Dantsker, D., Samuni, U., Friedman, A. J., Bonaventura, C., Manjula, B., Acharya, S. A., and Friedman, J. M. (2001) Beta 93 modified hemoglobin: kinetic and conformational consequences. Biochemistry 40:7581–7592.PubMedCrossRefGoogle Scholar
  40. Kitagawa, T. (1988) The heme protein structure and the iron histidine stretching mode. In Biological Application of Raman Spectroscopy, ed. T. G. Spiro, pp. 97–131. New York: John Wiley & Sons.Google Scholar
  41. Kwiatkowski, L. D, Hui, H. L, Wierzba, A., Noble, R. W, Walder, R. Y, Peterson, E. S, Sligar, S. G, and Sanders, K. E. (1998) Preparation and kinetic characterization of a series of betaW37 variants of human hemoglobin A: Evidence for high-affinity T quaternary structures. Biochemistry 37:4325–4335.PubMedCrossRefGoogle Scholar
  42. Kwiatkowski, L. D., Hui, H. L., Karasik, E., Colby, J. E., and Noble, R. W. (2007) Mutations of the betaN102 residue of HbA not only inhibit the ligand-linked T to Re state transition, but also profoundly affect the properties of the T state itself. Biochemistry 46:2037–2049.PubMedCrossRefGoogle Scholar
  43. Lalezari, I., Lalezari, P., Poyart, C., Marden, M., Kister, J., Bohn, B., Fermi, G., and Perutz, M. F. (1990) New effectors of human hemoglobin: Structure and function. Biochemistry 29:1515–1523.PubMedCrossRefGoogle Scholar
  44. Lukin, J. A., Kontaxis, G., Simplaceanu, V., Yuan, Y., Bax, A., and Ho, C. (2003) Quaternary structure of hemoglobin in solution. Proc. Natl. Acad. Sci. U.S.A. 100:517–520.PubMedCrossRefGoogle Scholar
  45. Mueser, T. C., Rogers, P. H., and Arnone, A. (2000) Interface sliding as illustrated by the multiple quaternary structures of liganded hemoglobin. Biochemistry 39:15353–15364.PubMedCrossRefGoogle Scholar
  46. Nagatomo, S., Nagai, M., Mizutani, Y., Yonetani, T., and Kitagawa, T. (2005) Quaternary structures of intermediately ligated human hemoglobin a and influences from strong allosteric effectors: Resonance Raman investigation. Biophys. J. 89:1203–1213.PubMedCrossRefGoogle Scholar
  47. Noble, R. W, Hui, H. L., Kwiatkowski, L. D., Paily, P., DeYoung, A., Wierzba, A., and Colby, J. E. (2001) Mutational effects at the subunit interfaces of human hemoglobin: evidence for a unique sensitivity of the T quaternary state to changes in the hinge region of the alpha 1 beta 2 interface. Biochemistry 40:12357–12368.PubMedCrossRefGoogle Scholar
  48. Ondrias, M. R., Rousseau, D. L., Shelnutt, J. A., and Simon, S. R. (1982) Quaternary-transformation-induced changes at the heme in deoxyhemoglobins. Biochemistry 21:3428–3437.PubMedCrossRefGoogle Scholar
  49. Perutz, M. F., Fermi, G., Luisi, B., Shaanan, B., and Liddington, R. C. (1987) Stereochemistry of cooperative mechanisms in hemoglobin. Cold Spring Harb. Symp. Quant. Biol. 52:555–565.PubMedGoogle Scholar
  50. Perutz, M. F., Wilkinson, A. J., Paoli, M., and Dodson, G. G. (1998) The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu. Rev. Biophys. Biomol. Struct. 27:1–34.PubMedCrossRefGoogle Scholar
  51. Peterson, E. S., and Friedman, J. M. (1998) A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A. Biochemistry 37:4346–4357.PubMedCrossRefGoogle Scholar
  52. Rousseau, D. L., and Friedman, J. M. (1988) Transient and cryogenic studies of photodissociated hemoglobin and myoglobin. In Biological Applications of Raman Spectroscopy, ed. T. G. Spiro, pp. 133–215. New York: John Wiley & Sons.Google Scholar
  53. Safo, M. K., and Abraham, D. J. (2005) The enigma of the liganded hemoglobin end state: a novel quaternary structure of human carbonmonoxy hemoglobin. Biochemistry 44:8347–8359.PubMedCrossRefGoogle Scholar
  54. Samuni, U., Dantsker, D., Khan, I., Friedman, A. J., Peterson, E., and Friedman, J. M. (2002) Spectroscopically and kinetically distinct conformational populations of sol-gelencapsulated carbonmonoxy myoglobin. A comparison with hemoglobin. J. Biol. Chem. 277:25783–25790.PubMedCrossRefGoogle Scholar
  55. Samuni, U., Juszczak, L., Dantsker, D., Khan, L, Friedman, A. J., Pérez-González-de-Apodaca, J., Bruno, S., Hui, H. L., Colby, J. E., Karasik, E., Kwiatkowski, L. D., Mozzarelli, A., Noble, R., and Friedman, J. M. (2003) Functional and spectroscopic characterization of half-liganded iron-zinc hybrid hemoglobin: evidence for conformational plasticity within the T state. Biochemistry 42:8272–8288.PubMedCrossRefGoogle Scholar
  56. Samuni, U., Dantsker, D., Juszczak, L. J., Bettati, S., Ronda, L., Mozzarelli, A., and Friedman, J. M. (2004) Spectroscopic and functional characterization of T state hemoglobin conformations encapsulated in silica gels. Biochemistry 43:13674–13682.PubMedCrossRefGoogle Scholar
  57. Samuni, U., Roche, C. J., Dantsker, D., Juszczak, L. J., and Friedman, J. M. (2006) Modulation of reactivity and conformation within the T-quaternary state of human hemoglobin: the combined use of mutagenesis and sol-gel encapsulation. Biochemistry 45:2820–2835.PubMedCrossRefGoogle Scholar
  58. Samuni, U., Dantsker, D., Roche, C. J., Friedman, J. M. (2007a) Ligand recombination and a hierarchy of solvent slaved dynamics: the origin of kinetic phases in hemeproteins. Gene 398:234–248.PubMedCrossRefGoogle Scholar
  59. Samuni, U., Roche, C. J., Dantsker, D., and Friedman, J. M. (2007b) Conformational dependence of hemoglobin reactivity under high viscosity conditions: the role of solvent slaved dynamics. J. Am. Chem. Soc. 129:12756–12764.PubMedCrossRefGoogle Scholar
  60. Schiro, G., and Cupane, A. (2007) Quaternary relaxations in sol-gel encapsulated hemoglobin studied via NIR and UV spectroscopy. Biochemistry 46:11568–11576.PubMedCrossRefGoogle Scholar
  61. Schiro, G., Sclafania, M., Caronnaa, C., Natalib, F., Plazanetc, M., and Cupane, A. (2008) Dynamics of myoglobin in confinement: an elastic and quasi-elastic neutron scattering study. Chem. Phys. (in press, corrected proof).Google Scholar
  62. Scott, T. W., and Friedman, J. M. (1984) Tertiary-structure relaxation in hemoglobin: a transient Raman study. J. Am. Chem. Soc. 106:5677–5687.CrossRefGoogle Scholar
  63. Scott, T. W., Friedman, J. ML, and Macdonald, V. W. (1985) Distal and proximal control of ligand reactivity: a transient Raman comparison of COHbA and COHb (Zurich). J. Am. Chem. Soc. 107:3702–3705.CrossRefGoogle Scholar
  64. Shibayama, N., and Saigo, S. (1995) Fixation of the quaternary structures of human adult haemoglobin by encapsulation in transparent porous silica gels. J. Mol. Biol. 251:203–209.PubMedCrossRefGoogle Scholar
  65. Shibayama, N., and Saigo, S. (2001) Direct observation of two distinct affinity conformations in the T state human deoxyhemoglobin. FEBS Lett. 492:50–53.PubMedCrossRefGoogle Scholar
  66. Silva, M. M., Rogers, P. H., and Arnone A (1992) A third quaternary structure of human hemoglobin A at 1.7-A resolution. J. Biol. Chem. 267:17248–17256.PubMedGoogle Scholar
  67. Tsuneshige, A., Park, S., and Yonetani, T. (2002) Heterotropic effectors control the hemoglobin function by interacting with its T and R states — a new view on the principle of allostery. Biophys. Chem. 98:49–63.PubMedCrossRefGoogle Scholar
  68. Viappiani, C., Bettati, S., Bruno, S., Ronda, L., Abbruzzetti, S., Mozzarelli, A., and Eaton, W. A. (2004) New insights into allosteric mechanisms from trapping unstable protein conformations in silica gels. Proc. Natl. Acad. Sci. U.S.A. 101:14414–14419.PubMedCrossRefGoogle Scholar
  69. Yonetani, T., Park, S., Tsuneshige, A., Imai, K., and Kanaori, K. (2002) Global allostery model of hemoglobin: modulation of O2-affinity, cooperativity, and Bohr effect by heterotropic allosteric effectors. J. Biol. Chem. 277:34508–34520.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Uri Samuni
    • 1
  • Camille J. Roche
    • 2
  • David Dantsker
    • 2
  • Joel M. Friedman
    • 2
  1. 1.Department of ChemistryQueens College of the City University of New YorkQueens, New YorkUSA
  2. 2.Department of Physiology and BiophysicsAlbert Einstein College of MedicineBronx, New YorkUSA

Personalised recommendations