Human Serum Haeme-albumin: An Allosteric ‘Chronosteric’ Protein

  • Mauro Fasano
  • Gabriella Fanali
  • Riccardo Fesce
  • Paolo Ascenzi
Part of the Protein Reviews book series (PRON, volume 9)


Serum albumin (SA) participates in plasma haeme scavenging. Sequestering the haeme, SA accounts for most of the antioxidant capacity of plasma. In turn, serum haeme albumin (SA-haeme) displays ligand-binding and pseudoenzymatic properties. Recently, engineered SA-haeme has been proposed as an O2 carrier not only for red blood cell substitutes but also as an O2-therapeutic agent. Eventually, SA-haeme could be considered an allosteric ‘chronosteric’ haeme-protein, the transient haeme-based reactivity being modulated by third components.


Human Serum Albumin Sperm Whale Acute Intermittent Porphyria Ligand Binding Property Porphyrin Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, S., Nagano, S., Ishimori, K., Watanabe, Y., Morishima, I., Egawa, T., Kitagawa, T., and Makino, R. 1993. Roles of proximal ligand in heme proteins: replacement of proximal histidine of human myoglobin with cysteine and tyrosine by site-directed mutagenesis as models for P-450, chloroperoxidase, and catalase. Biochemistry 32:241–252.PubMedCrossRefGoogle Scholar
  2. Ascenzi, P., and Fasano, M. 2007. Abacavir modulates peroxynitrite-mediated oxidation of ferrous nitrosylated human serum heme-albumin. Biochem. Biophys. Res. Commun. 353:469–474.PubMedCrossRefGoogle Scholar
  3. Ascenzi, P., Bocedi, A., Visca, P., Altruda, F., Tolosano, E., Beringhelli, T., and Fasano, M. 2005. Hemoglobin and heme scavenging. IUBMB Life 57:749–759.PubMedCrossRefGoogle Scholar
  4. Ascenzi, P., Bocedi, A., Notari, S., Fanali, G., Fesce, R., and Fasano, M. 2006a. Allosteric modulation of drug binding to human serum albumin. Mini Rev. Med. Chem. 6:483–489.PubMedCrossRefGoogle Scholar
  5. Ascenzi, P., Bocedi, A., Visca, P., Minetti, M., and Clementi, E. 2006b. Does CO2 modulate peroxynitrite specificity? IUBMB Life 58:611–613.PubMedCrossRefGoogle Scholar
  6. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The Protein Data Bank. Nucleic Acids Res. 28:235–242.PubMedCrossRefGoogle Scholar
  7. Bonkovsky, H. L., Healey, J. F., Lourie, A. N., and Gerron, G. G. 1991. Intravenous hemealbumin in acute intermittent porphyria: evidence for repletion of hepatic hemoproteins and regulatory heme pools. Am. J. Gastroenterol. 86:1050–1056.PubMedGoogle Scholar
  8. Carter, D.C., Ho, J.X., and Rüker, F. 1999. Oxygen-transporting albumin: albumin-based blood replacement composition and blood volume expander. US Pat. No.5,948,609.Google Scholar
  9. Cha, M. K., and Kim, I. H. 1996. Glutathione-linked thiol peroxidase activity of human serum albumin: a possible antioxidant role of serum albumin in blood plasma. Biochem. Biophys. Res. Commun. 222:619–625. Erratum in: (1996) Biochem. Biophys. Res. Commun. 225:695.PubMedCrossRefGoogle Scholar
  10. Curry, S. 2002. Beyond expansion: structural studies on the transport roles of human serum albumin. Vox Sang. 83[Suppl. 1]:315–319.PubMedGoogle Scholar
  11. Fanali, G., Bocedi, A., Ascenzi, P., and Fasano, M. 2007. Modulation of heme and myristate binding to human serum albumin by anti-HIV drugs. An optical and NMR spectroscopic study. FEBS J. 274:4491–4502.PubMedCrossRefGoogle Scholar
  12. Fasano, M., Baroni, S., Vannini, A., Ascenzi, P., and Aime, S. 2001. Relaxometric characterization of human hemalbumin. J. Biol. Inorg. Chem. 6:650–658.PubMedCrossRefGoogle Scholar
  13. Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., Notari, S., and Ascenzi, P. 2005. The extraordinary ligand binding properties of human serum albumin. IUBMB Life 57:787–796.PubMedCrossRefGoogle Scholar
  14. Fasano, M., Fanali, G., Leboffe, L., and Ascenzi, P. 2007. Heme binding to albuminoid proteins is the result of recent evolution. IUBMB Life 59:436–440.PubMedCrossRefGoogle Scholar
  15. Ghuman, J., Zunszain, P.A., Petitpas, I., Bhattacharya, A.A., Otagiri, M., and Curry, S. 2005. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol. 353:38–52.PubMedCrossRefGoogle Scholar
  16. Goldstein, S., Lind, J., and Merényi, G. 2005. Chemistry of peroxynitrites and peroxynitrates. Chem. Rev. 105:2457–2470.PubMedCrossRefGoogle Scholar
  17. Guex, N., and Peitsch, M. C. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723.PubMedCrossRefGoogle Scholar
  18. Herold, S., and Boccini, F. 2006. NO• release from MbFe(II)NO and HbFe(II)NO after oxidation by peroxynitrite. Inorg. Chem. 45:6933–6943.PubMedCrossRefGoogle Scholar
  19. Kamal, J. K. A., and Behere, D. V. 2002. Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin. J. Biol. Inorg. Chem. 7:273–283.PubMedCrossRefGoogle Scholar
  20. Kharitonov, V. G., Sharma, V. S., Magde, D., and Koesling, D. 1997. Kinetics of nitric oxide dissociation from five-and six-coordinate nitrosyl hemes and heme proteins, including soluble guanylate cyclase. Biochemistry 36:6814–6818.PubMedCrossRefGoogle Scholar
  21. Komatsu, T., Matsukawa, Y., and Tsuchida, E. 2000. Kinetics of CO and O2 binding to human serum albumin-heme hybrid. Bioconjug. Chem. 11:772–776.PubMedCrossRefGoogle Scholar
  22. Komatsu, T., Matsukawa, Y., and Tsuchida, E. 2001. Reaction of nitric oxide with synthetic hemoprotein, human serum albumin incorporating tetraphenylporphinatoiron(II) derivatives. Bioconjug. Chem. 12:71–75.PubMedCrossRefGoogle Scholar
  23. Komatsu, T., Ohmichi, N., Zunszain, P. A., Curry, S., and Tsuchida, E. 2004. Dioxygenation of human serum albumin having a prosthetic heme group in a tailor-made heme pocket. J. Am. Chem. Soc. 126:14304–14305.PubMedCrossRefGoogle Scholar
  24. Komatsu, T., Ohmichi, N., Nakagawa, A., Zunszain, P. A., Curry, S., and Tsuchida, E. 2005. O2 and CO binding properties of artificial hemoproteins formed by complexing iron protoporphyrin IX with human serum albumin mutants. J. Am. Chem. Soc. 127:15933–15942.PubMedCrossRefGoogle Scholar
  25. Marden, M. C., Hazard, E. S., Leclerc, L., and Gibson, Q. H. 1989. Flash photolysis of the serum albumin-heme-CO complex. Biochemistry 28:4422–4426.PubMedCrossRefGoogle Scholar
  26. Monzani, E., Bonafè, B., Fallarini, A., Redaelli, C., Casella, L., Minchiotti, L., and Galliano, M. (2001) Enzymatic properties of hemalbumin. Biochim. Biophys. Acta 1547:302–312.PubMedGoogle Scholar
  27. Moore, E. G., and Gibson, Q. H. 1976. Cooperativity in the dissociation of nitric oxide from hemoglobin. J. Biol. Chem. 251:2788–2794.PubMedGoogle Scholar
  28. Nakagawa, A., Komatsu, T., Iizuka, M., and Tsuchida, E. 2006. Human serum albumin hybrid incorporating tailed porphyrinatoiron(II) in the a,a,a,b-conformer as an O2-binding site. Bioconjug. Chem. 17:146–151.PubMedCrossRefGoogle Scholar
  29. Papina, A. A., and Koppenol, W. H. 2006. Two pathways of carbon dioxide catalysed oxidative coupling of phenol by peroxynitrite, Chem. Res. Toxicol. 19:382–391.CrossRefGoogle Scholar
  30. Peters, T. Jr. 1996. All about Albumin: Biochemistry, Genetics and Medical Applications. San Diego and London: Academic Press.Google Scholar
  31. Rohlfs, R. J., Mathews, A. J., Carver, T. E., Olson, J. S., Springer, B. A., Egeberg, K. D., and Sligar, S. G. 1990. The effects of arnino acid substitution at position E7 (residue 64) on the kinetics of ligand binding to sperm whale myoglobin. J. Biol. Chem. 265:3168–3176.PubMedGoogle Scholar
  32. Rydberg, P., Sigfridsson, E., and Ryde, U. 2004. On the role of the axial ligand in heme proteins: a theoretical study. J. Biol. Inorg. Chem. 9:203–223.PubMedCrossRefGoogle Scholar
  33. Simard, J. R., Zunszain, P. A., Hamilton, J. A., and Curry, S. 2006. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. J. Mol. Biol. 361:336–351.PubMedCrossRefGoogle Scholar
  34. Vinogradov, S. N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Gough, J., Dewilde, S., Moens, L., and Vanfleteren, J. R. 2006. A phylogenomic profile of globins. BMC Evol. Biol. 6:31.PubMedCrossRefGoogle Scholar
  35. Vuletich, D. A., and Lecomte, J. T. 2006. A phylogenetic and structural analysis of truncated hemoglobins. J. Mol. Evol. 62:196–210.PubMedCrossRefGoogle Scholar
  36. Wardell, M., Wang, Z., Ho, J. X., Robert, J., Rüker, F., Ruble, J., and Carter, D. C. 2002. The atomic structure of human methemalbumin at 1.9 Å. Biochem. Biophys. Res. Commun. 291:813–819.PubMedCrossRefGoogle Scholar
  37. Wittenberg, J. B. 2007. On optima: the case of myoglobin-facilitated oxygen diffusion. Gene 398:156–161.PubMedCrossRefGoogle Scholar
  38. Wittenberg, J. B., Bolognesi, M., Wittenberg, B. A., and Guertin, M. 2002. Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J. Biol. Chem. 277:871–874.PubMedCrossRefGoogle Scholar
  39. Zunszain, P. A., Ghuman, J., Komatsu, T., Tsuchida, E., and Curry, S. 2003. Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Struct. Biol. 3:6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Mauro Fasano
    • 1
  • Gabriella Fanali
    • 1
  • Riccardo Fesce
    • 1
  • Paolo Ascenzi
    • 2
    • 3
  1. 1.Department of Structural and Functional Biology, and Center of NeuroscienceUniversity of InsubriaBusto Arsizio (VA)Italy
  2. 2.National Institute for Infectious DiseasesI.R.C.C.S. “Lazzaro Spallanzani”RomeItaly
  3. 3.Interdepartmental Laboratory for Electron MicroscopyUniversity “Roma Tre”RomeItaly

Personalised recommendations