Advertisement

Cooperativity and Ligand-linked Polymerisation in Scapharca Tetrameric Haemoglobin

  • Gianni Colotti
  • Alberto Boffi
  • Emilia Chiancone
Part of the Protein Reviews book series (PRON, volume 9)

Abstract

The assembly of two heterodimers into the A2B2 tetrameric haemoglobin from Scapharca inaequivalvis (HbII) confers to the molecule additional properties relative to the dimeric component (HbI), namely the capacity to undergo an oxygen- and anion-linked polymerisation process. This manifests itself functionally in an increase in cooperativity and a decrease in oxygen affinity at high protein concentrations. The functional parameters of the HbII tetramer as distinct from the effect of ligand-linked polymerisation, i.e. from the so-called polysteric effect, were evaluated in the present work. In conditions where polymerisation is abolished, the A2B2 tetramer is characterised by a significantly higher Hill coefficient than the HbI dimer (n=1.8 vs. 1.5), indicating that in Scapharca HbII heme-heme communication takes place also over long-range pathways that differ with respect to the direct pathway operative in HbI and by inference in the AB dimer of HbII. At high HbII concentration, where polymerisation of deoxygenated HbII is at a maximum, an additional increase in cooperativity is observed due to the association of the A2B2 tetramer into the (A2B2)4 and (A2B2)8 species. Thus, the consequent increase in Hill coefficient from 1.8 to 3.0 can be attributed to polysteric linkage.

Keywords

Sedimentation Velocity Hill Coefficient Oxygen Affinity High Protein Concentration Oxygen Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonini, E., and Chiancone, E. 1977. Assembly of multisubunit respiratory proteins. Annu. Rev. Biophys. Bioeng. 6:239–271.PubMedCrossRefGoogle Scholar
  2. Boffi, A., Vecchini, P., and Chiancone, E. 1990. Anion-linked polymerization of the tetrameric hemoglobin from Scapharca inaequivalvis. Characterization and functional relevance. J. Biol. Chem. 265:6203–6209.PubMedGoogle Scholar
  3. Chiancone, E., Vecchini, P., Verzili, D., Ascoli, F., and Antonini, E. 1981. Dimeric and tetrameric hemoglobins from the mollusc Scapharca inaequivalvis. Structural and functional properties. J. Mol. Biol. 152:577–592.PubMedCrossRefGoogle Scholar
  4. Colosimo, A., Brunori, M., and Wyman, J. 1974. Concerted changes in an allosteric macro-molecule. Biophys. Chem. 2:338–344.PubMedCrossRefGoogle Scholar
  5. Colosimo, A., Brunori, M., and Wyman, J. 1976. Polysteric linkage. J. Mol. Biol. 100:47–57.PubMedCrossRefGoogle Scholar
  6. Doyle, M. L., and Ackers, G. K. 1992. Cooperative oxygen binding, subunit assembly, and sulfhydryl reaction kinetics of the eight cyanomet intermediate ligation states of human hemoglobin. Biochemistry 31:11182–11195.PubMedCrossRefGoogle Scholar
  7. Gilbert, L. M., and Gilbert, G. A. 1973. Sedimentation velocity measurement of protein association. Methods Enzymol. 27:273–296.PubMedCrossRefGoogle Scholar
  8. Ikeda-Saito, M., Yonetani, T., Chiancone, E., Ascoli, F., Verzili, D., and Antonini, E. 1983. Thermodynamic properties of oxygen equilibria of dimeric and tetrameric hemoglobins from Scapharca inaequivalvis. J. Mol. Biol. 170:1009–1018.PubMedCrossRefGoogle Scholar
  9. Knapp, J. E., and Royer, W. E. Jr. 2003. Ligand-linked structural transitions in crystals of a cooperative dimeric hemoglobin. Biochemistry 42:4640–4647.PubMedCrossRefGoogle Scholar
  10. Knapp, J. E., Pahl, R., Srajer, V., and Royer, W. E. Jr. 2006. Allosteric action in real time: time-resolved crystallographic studies of a cooperative dimeric hemoglobin. Proc. Natl. Acad. Sci. U.S.A. 103:7649–7654.PubMedCrossRefGoogle Scholar
  11. Mills, R C., Johnson, M. L., and Ackers, G. K. 1976. Oxygenation-linked subunit interactions in human hemoglobin: experimental studies on the concentration dependence of oxygenation curves. Biochemistry 15:5350–5362.PubMedCrossRefGoogle Scholar
  12. Mozzarelli, A., Bettati, S., Rivetti, C., Rossi, G. L., Colotti, G., and Chiancone, E. 1996. Cooperative oxygen binding to Scapharca inaequivalvis hemoglobin in the crystal. J. Biol. Chem. 271:3627–3632.PubMedCrossRefGoogle Scholar
  13. Pardanani, A., Gibson, Q. H., Colotti, G., and Royer, W. E. Jr. 1997. Mutation of residue Phe97 to Leu disrupts the central allosteric pathway in Scapharca dimeric hemoglobin. J. Biol. Chem. 272:13171–13179.PubMedCrossRefGoogle Scholar
  14. Perutz, M. F. 1970. Stereochemistry of cooperative effects in haemoglobin. Nature (London) 228:726–739.PubMedCrossRefGoogle Scholar
  15. Perutz, M. F. 1989. Mechanisms of cooperativity and allosteric regulation in proteins. Q. Rev. Biophys., Cambridge University Press, New York, U.S.A., 1–101.Google Scholar
  16. Petruzzelli, R., Goffredo, M., Barra, D., Bossa, F., Boffi, A., Verzili, D., Ascoli, F., and Chiancone, E. 1985. Amino acid sequence of the cooperative homodimeric hemoglobin from the mollusc Scapharca inaequivalvis and topology of the intersubunit contacts. FEBS Lett. 184:328–332.PubMedCrossRefGoogle Scholar
  17. Petruzzelli, R., Boffi, A., Barra, D., Bossa, F., Ascoli, F., and Chiancone, E. 1989. Scapharca hemoglobins, type cases of a novel mode of chain assembly and heme-heme communication. Amino acid sequence and subunit interactions of the tetrameric component. FEBS Lett. 259:133–136.PubMedCrossRefGoogle Scholar
  18. Piro, M. C., Gambacurta, A., and Ascoli, F. 1996. Scapharca inaequivalvis tetrameric hemoglobin A and B chains: cDNA sequencing and genomic organization. J. Mol. Evol. 43:594–601.PubMedCrossRefGoogle Scholar
  19. Rossi Fanelli, A., and Antonini, E. 1958. Studies on the oxygen and carbon monoxide equilibria of human myoglobin. Arch. Biochem. Biophys. 77:478–492.PubMedCrossRefGoogle Scholar
  20. Royer, W. E. Jr. 1994. High-resolution crystallographic analysis of a co-operative dimeric hemoglobin. J. Mol. Biol. 235:657–681.PubMedCrossRefGoogle Scholar
  21. Royer, W. E. Jr., Love, W. E., and Fenderson, F. F. 1985. Cooperative dimeric and tetrameric clam haemoglobins are novel assemblages of myoglobin folds. Nature 316:277–280.PubMedCrossRefGoogle Scholar
  22. Royer, W. E. Jr., Hendrickson, W. A., and Chiancone, E. 1989. The 2.4-Å crystal structure of Scapharca dimeric hemoglobin. Cooperativity based on directly communicating hemes at a novel subunit interface. J. Biol. Chem. 264:21052–21061.PubMedGoogle Scholar
  23. Royer W. E. Jr., Hendrickson, W. A., and Chiancone, E. 1990. Structural transitions upon ligand binding in a cooperative dimeric hemoglobin. Science 249:518–521.PubMedCrossRefGoogle Scholar
  24. Royer, W. E. Jr., Heard, K. S., Harrington, D. J., and Chiancone, E. 1995. The 2.0 Å crystal structure of Scapharca tetrameric hemoglobin: cooperative dimers within an allosteric tetramer. J. Mol. Biol. 253:168–186.PubMedCrossRefGoogle Scholar
  25. Royer, W. E. Jr., Pardanani, A., Gibson, Q. H., Peterson, E. S., and Friedman, J. M. 1996. Ordered water molecules as key allosteric mediators in a cooperative dimeric hemoglobin. Proc. Natl. Acad. Sci. U.S.A. 93:14526–14531.PubMedCrossRefGoogle Scholar
  26. Royer, W. E. Jr., Fox, R. A., Smith, F. R., Zhu, D., and Braswell, E. H. 1997. Ligand linked assembly of Scapharca dimeric hemoglobin. J. Biol. Chem. 272:5689–5694.PubMedCrossRefGoogle Scholar
  27. Zhou, Y., Zhou, H., and Karplus, M. 2003. Cooperativity in Scapharca dimeric hemoglobin: simulation of binding intermediates and elucidation of the role of interfacial water. J. Mol. Biol. 326:593–606.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Gianni Colotti
    • 1
  • Alberto Boffi
    • 2
  • Emilia Chiancone
    • 2
  1. 1.Institute of Molecular Biology and PathologyCNRRomeItaly
  2. 2.Department of Biochemicai Sciences “A. Rossi-Fanelli”University of Rome “La Sapienza”RomeItaly

Personalised recommendations