Bis-histidyl Ferric Adducts in Tetrameric Haemoglobins

  • Alessandro Vergara
  • Cinzia Verde
  • Guido di Prisco
  • Lelio Mazzarella
Part of the Protein Reviews book series (PRON, volume 9)


In the last decade crystallographic evidence for endogenous coordination at the sixth coordination site of the heme iron has been reported for monomeric haemoglobins (Hbs) in both the ferrous (haemochrome) and ferric (haemichrome) oxidation state. Usually, the sixth ligand is provided by the imi-dazole side chain of a His, the only putative ligand normally present in the distal site of the heme pocket. More recently, structural and spectroscopic evidence has been reported, which show that the bis-histidyl adduct in the ferric state represents a common accessible ordered state also for several tetrameric Hbs isolated from Antarctic fish, both in the solid and solution state. Bis-histidyl coordination was also discovered in the crystals of horse met-Hb exposed to acidic pH. All these crystal structures are characterised by a different binding state of α and β chains. Tetrameric Hbs with all chains in the bis-histidyl coordination state have not yet been found. Herein we review the structural details of the recent results in this field, together with solution studies on the pathway of haemichrome formation.


Ferric State Antarctic Fish Heme Pocket Ferric Heme Distal Histidine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appleby, C. A., Blumberg, W. E., Peisach, J., Wittenberg, B. A., and Wittenberg, J. B. 1976. Leghemoglobin. 3. An electron paramagnetic resonance and optical spectral study of the free protein and its complexes with nicotinate and acetate. J. Biol. Chem. 251:6090–6096.PubMedGoogle Scholar
  2. Boffi, A., Takahashi, S., Spagnuolo, C., Rousseau, D. L., and Chiancone E. 1994. Structural characterization of oxidized dimeric Scapharca inaequivalvis hemoglobin by resonance Raman spectroscopy. J. Biol. Chem. 269:20437–20440.PubMedGoogle Scholar
  3. Camardella, L., Caruso, C., D’Avino, R., di Prisco, G., Rutigliano, B., Tamburrini, M., Fermi, G., and Perutz, M. F. 1992. Hemoglobin of the Antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative. J. Mol. Biol. 224:449–460.PubMedCrossRefGoogle Scholar
  4. Couture, M., Das, T. K., Savard, P.-Y., Ouellet, Y., Wittenberg, J. B., Wittenberg, B. A., Rousseau D. L., and Guertin, M. 2000. Structural investigations of the hemoglobin of the cyanobacterium Synechocystis PCC6803 reveal a unique distal heme pocket. Eur. J. Biochem. 267:4770–4780.PubMedCrossRefGoogle Scholar
  5. Croci, S., Pedrazzi, G., Passeri, G., Piccolo, P., and Ortalli, I. 2001. Acetylphenylhydrazine induced haemoglobin oxidation in erythrocytes studied by Mossbauer spectroscopy. Biochim. Biophys. Acta 1568:99–104.PubMedGoogle Scholar
  6. Das, T. K., Couture, M., Lee, H. C., Peisach, J., Rousseau, D. L., Wittenberg, B. A., Wittenberg, J. B., and Guertin, M. 1999a. Identification of the ligands to the ferric heme of Chlamydomonas Chloroplast hemoglobin: evidence for ligation of Tyrosine-63 (B10) to the heme. Biochemistry 38:15360–15368.PubMedCrossRefGoogle Scholar
  7. Das, T. K., Lee, H. C., Duff, S. M. G., Hill, R. D., Peisach, J., Rousseau, D. L., Wittenberg, B. A., and Wittenberg, J.B. 1999b. The heme environment in barley hemoglobin. J. Biol. Chem. 274:4207–4212.PubMedCrossRefGoogle Scholar
  8. de Sanctis, D., Dewilde, S., Pesce, A., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., and Bolognesi, M. 2004a. Crystal structure of cytoglobin: The fourth globin type discovered in man displays heme hexa-coordination. J. Mol. Biol. 336:917–927.PubMedCrossRefGoogle Scholar
  9. de Sanctis, D., Dewilde, S., Vonrhein, C., Pesce, A., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., Ponassi, M., Nardini, M., et al. 2005. Bishistidyl heme hexacoordination, a key structural property in Drosophila melanogaster hemoglobin. J. Biol. Chem. 280:27222–27229.PubMedCrossRefGoogle Scholar
  10. de Sanctis, D., Pesce, A., Nardini, M., Bolognesi, M., Bocedi, A., and Ascenzi, P. 2004b. Structure-function relationships in the growing hexa-coordinate hemoglobin sub-family. IUBMB Life 56:643–651.PubMedCrossRefGoogle Scholar
  11. Feng, L., Zhou, S., Gu, L., Gell, D., Mackay, J., Weiss, M., Gow, A., and Shi, Y. 2005. Structure of oxidized a-haemoglobin bound to AHSP reveals a protective mechanism for haem. Nature 435:697–701.PubMedCrossRefGoogle Scholar
  12. Giordano, D., Vergara, A., Lee, H., Peisach, J., Balestrieri, M., Mazzarella, L., Parisi, E., di Prisco, G., and Verde, C. 2007. Hemoglobin structure/function and globin-gene evolution in the Arctic fish Liparis tunicatus. Gene 406:58–68.PubMedGoogle Scholar
  13. Hargrove, M. S., Brucker, E. A., Stec, B., Sarath, G., Arredondo-Peter, R., Klucas, R. V., Olson, J. S., and Phillips, G.N. 2000. Crystal structure of a nonsymbiotic plant hemoglobin. Structure 8:1005–1014.PubMedCrossRefGoogle Scholar
  14. Hoy, J. A., Kundu, S., Trent, J. T., III, Ramaswamy, S., and Hargrove, M. S. 2004. The crystal structure of Synechocystis hemoglobin with a covalent heme linkage. J. Biol. Chem. 279:16535–16542.PubMedCrossRefGoogle Scholar
  15. Ikeda-Saito, M., Hori, H., Andersson, L. A., Prince, R. C., Pickering, I. J., George, G. N., Sanders, C. R., Lutz, R. S., McKelvey, E. J., and Mattera, R. 1992. Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants. J. Biol. Chem. 267:22843–22852.PubMedGoogle Scholar
  16. Ilari, A., Bonamore, A., Farina, A., Johnson, K., and Boffi, A. 2002. The X-ray structure of ferric Escherichia coli flavohemoglobin reveals an unexpected geometry of the distal heme pocket. J. Biol. Chem. 26:23725–23732.CrossRefGoogle Scholar
  17. Marmo Moreira, L., Lima Poli, A., Costa-Filho, A. J., and Imasato, H. 2006. Pentacoordinate and hexacoordinate ferric hemes in acid medium: EPR, UV-Vis and CD studies of the giant extracellular hemoglobin of Glossoscolex paulistus. Biophys. Chem. 124:62–72.PubMedCrossRefGoogle Scholar
  18. Mercs, L., Labat, G., Neels, A., Ehlers, A., and Albrecht, M. 2006. Piano-stool iron(II) complexes as probes for the bonding of N-heterocyclic carbenes: indications for π-acceptor ability. Organometallics 25:5648–5656.CrossRefGoogle Scholar
  19. Milani, M., Pesce, A., Nardini, M., Ouellet, H., Ouellet, Y., Dewilde, S., Bocedi, A., Ascenzi, P., Guertin, M., Moens, L. et al. 2005. Structural bases for heme binding and diatomic ligand recognition in truncated hemoglobins. J. Inorg. Biochem. 99:97–109.PubMedCrossRefGoogle Scholar
  20. Mitchell, D. T., Kitto, G. B., and Hackert, M. L. 1995. Structural analysis of monomeric hemichrome and dimeric cyanomet hemoglobins from Caudina arenicola. J. Mol. Biol. 251:421–431.PubMedCrossRefGoogle Scholar
  21. Nagai, M., Aki, M., Li, R., Jin, Y., Sakai, H., Nagatomo, S., and Kitagawa, T. 2000. Heme structure of hemoglobin M Iwate [R87(F8)HisfTyr]: a UV and Visible Resonance Raman study. Biochemistry 39:13083–13105.CrossRefGoogle Scholar
  22. Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., and Guertin, M. 2002. Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc. Natl. Acad. Sci. U.S.A. 277:5902–5907.CrossRefGoogle Scholar
  23. Ouellet, H., Ranguelova, K., Labarre, M., Wittenberg, J., Wittenberg, B., Magliozzo, R., and Guertin, M. 2007. Reaction of Mycobacterium tuberculosis truncated hemoglobin O with hydrogen peroxide: evidence for peroxidatic activity and formation of protein-based radicals. J. Biol. Chem. 282:7491–7503.PubMedCrossRefGoogle Scholar
  24. Pesce, A., De Sanctis, D., Nardini, M., Dewilde, S., Moens, L., Hankeln, T., Burmester, T., Ascenzi, P., and Bolognesi, M. 2004a. Reversible hexa-to penta-coordination of the heme Fe atom modulates ligand binding properties of neuroglobin and cytoglobin. IUBMB Life 56:657–664.PubMedCrossRefGoogle Scholar
  25. Pesce, A., Dewilde, S., Nardini, M., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., and Bolognesi, M. 2004b. The human brain hexacoordinated neuroglobin three-dimensional structure. Micron 35:63–65.PubMedCrossRefGoogle Scholar
  26. Quillin, M., Arduini, R., Olson, J., and Phillips, G. J. 1993. High-resolution crystal structures of distal histidine mutants of sperm whale myoglobin. J. Mol. Biol. 234:140–155.PubMedCrossRefGoogle Scholar
  27. Ray, A., Friedman, B. A., and Friedman, J. M. 2002. Trehalose glass-facilitated thermal reduction of metmyoglobin and methemoglobin. J. Am. Chem. Soc. 124:7270–7271.PubMedCrossRefGoogle Scholar
  28. Riccio, A., Vitagliano, L., di Prisco, G., Zagari, A., and Mazzarella, L. 2002. The crystal structure of a tetrameric hemoglobin in a partial hemichrome state. Proc. Natl. Acad. Sci. U.S.A. 99:9801–9806.PubMedCrossRefGoogle Scholar
  29. Rifkind, J. M., Abugo, O., Levy, A., and Heim, J. M. 1994. Detection, formation, and relevance of hemichrome and hemochrome. Meth. Enzymol. 231:449–480.PubMedCrossRefGoogle Scholar
  30. Robinson, V. L., Smith, B. B., and Arnone, A. 2003. A pH-dependent aquomet-to-hemichrome transition in crystalline horse methemoglobin. Biochemistry 42:10113–10125.PubMedCrossRefGoogle Scholar
  31. Vallone, B., Nienhaus, K., Matthes, K., Brunori, M., and Nienhaus, G. 2004. The structure of murine neuroglobin: Novel pathways for ligand migration and binding. Proteins: Struct. Funct. Bioinf. 56:85–92.CrossRefGoogle Scholar
  32. Vergara, A. Franzese, M., Merlino, A., Vitagliano, L., di Prisco, G., Verde, C., Lee, H. C., Peisach, J., and Mazzarella, L. 2007. Structural characterization of ferric hemoglobins from three Antarctic fish species of the suborder Notothenioidei. Biophys. J. 93:2822–2829.PubMedCrossRefGoogle Scholar
  33. Vergara, A., Vitagliano, L., di Prisco, G., Verde, C., and Mazzarella, L. 2008. Spectroscopic and crystallographic characterization of hemichromes in tetrameric hemoglobins. Meth. Enzymol. 436A:421–440.Google Scholar
  34. Vitagliano, L., Bonomi, G., Riccio, A., di Prisco, G., Smulevich, G., and Mazzarella, L. 2004. The oxidation process of Antarctic fish hemoglobins. Eur. J. Biochem. 271:1651–1659.PubMedCrossRefGoogle Scholar
  35. Walker, F.A. 2004. Models of the bis-histidine-ligated electron-transferring cytochromes. Comparative geometric and electronic structure of low-spin ferro-and ferrihemes. Chem. Rev. 104:589–615.PubMedCrossRefGoogle Scholar
  36. Wittenberg, J., Wittenberg, B., Gibson, Q., Trinick, M., and Appleby, C. 1986. The kinetics of the reactions of Parasponia andersonii hemoglobin with oxygen, carbon monoxide, and nitric oxide. J. Biol. Chem. 261:13624–13631.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Alessandro Vergara
    • 1
  • Cinzia Verde
    • 2
  • Guido di Prisco
    • 2
  • Lelio Mazzarella
    • 1
  1. 1.Department of ChemistryUniversity of Naples “Federico II”NaplesItaly
  2. 2.Institute of Protein BiochemistryCNRNaplesItaly

Personalised recommendations