Skip to main content

Latte, fermentazione e prodotti lattiero-caseari fermentati e non fermentati

  • Chapter
Book cover Microbiologia degli alimenti

Part of the book series: Food ((FOOD))

  • 1064 Accesses

Estratto

Sebbene questo capitolo sia interamente dedicato al latte e ai prodotti derivati, il primo paragrafo riguarda la fermentazione, in virtù dell’importanza che tale processo riveste nella produzione dei prodotti lattiero-caseari.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Adler BB, Beuchat LR (2002) Death of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in garlic butter as affected by storage temperature. J Food Protect, 65: 1976–1980.

    Google Scholar 

  2. Aguirre M, Collins MD (1993) Lactic acid bacteria and human clinical infection. J Appl Bacteriol, 75: 95–107.

    CAS  Google Scholar 

  3. Allen SHG, Killermeyer RW, Stjernholm RL, Wood HG (1964) Purification and properties of enzymes involved in the propionic acid fermentation. J Bacteriol, 87: 171–187.

    CAS  Google Scholar 

  4. Altekruse SF, Timbo BB, Mobray JC, Bean NH, Potter ME (1998) Cheese-associated outbreaks of human illness in the United States, 1973 to 1992: Sanitary manufacturing practices protect consumers. J Food Protect, 61: 1405–1407.

    CAS  Google Scholar 

  5. Arnott DR, Duitschaever CL, Bullock DH (1974) Microbiological evaluation of yogurt produced commercially in Ontario. J Milk Food Technol, 37: 11–13.

    Google Scholar 

  6. Beumer RR, Cruysen JJM, Birtantie IRK (1988) The occurrence of Campylobacter jejuni in raw cows’ milk. J Appl Bacteriol, 65: 93–96.

    CAS  Google Scholar 

  7. Bodnaruk PW, Williams RG, Golden DA (1998) Survival ofYersinia enterocolitica during fermentation and storage of yogurt. J Food Sci, 63: 535–537.

    Article  CAS  Google Scholar 

  8. Brown WV, Collins EB (1977) End products and fermentation balances for lactic streptococci grown aerobically on low concentrations of glucose. Appl Environ Microbiol, 33: 38–42.

    CAS  Google Scholar 

  9. Carvajal M, Bolanos A, Rojo F, Méndez I (2003) Aflatoxin M1 in pasteurized and ultrapasteurized milk with different fat content in Mexico. J Food Protect, 66: 1885–1892.

    CAS  Google Scholar 

  10. Centers for Disease Control and Prevention (2002) Outbreak of Campylobacter jejuni infections associated with drinking unpasteurized milk procured through a cow-leasing program — Wisconsin, 2001. Morb Mort Wkly Rept, 51: 548–549.

    Google Scholar 

  11. Cleenwerck I, De Vos P (2008) Polyphasic taxonomy of acetic acid bacteria: An overview of the currently applied methodology. Int J Food Microbiol, 125(1): 2–14.

    Article  CAS  Google Scholar 

  12. Davis JG (1975) The microbiology of yoghurt. In: Carr JG, Cutting CV, Whiting GC (eds) Lactic Acid Bacteria in Beverages and Food. Academic Press, New York, pp. 245–263.

    Google Scholar 

  13. Doelle HA (1975) Bacterial Metabolism. Academic Press, New York.

    Google Scholar 

  14. Douglas SA, Gray MJ, Crandall AD, Boor KJ (2000) Characterization of chocolate milk spoilage patterns. J Food Protect, 63: 516–521.

    CAS  Google Scholar 

  15. Doyle MP, Roman DJ (1982) Prevalence and survival of Campylobacter jejuni in unpasteurized milk. Appl Environ Microbiol, 44: 1154–1158.

    CAS  Google Scholar 

  16. Food and Drug Administration, United States (1995) Grade A pasteurized milk ordinance. U.S. Department of Health and Human Services, Public Health Service, Washington, DC.

    Google Scholar 

  17. Foster EM, Nelson FE, Speck ML, Doetsch RN, Olson JC (1957) Dairy Microbiology. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  18. Frank JF (2001) Milk and dairy products. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food Microbiology: Fundamentals and Frontiers (2nd ed). ASM Press, Washington, DC., pp. 111–126

    Google Scholar 

  19. Garrote GL, Abraham AG, de Antoni GL (2000) Inhibitory power of kefir: The role of organic acids. J Food Protect, 63: 364–369.

    CAS  Google Scholar 

  20. Gilliland SE, Speck ML (1974) Frozen concentrated cultures of lactic starter bacteria: A review. J Milk Food Technol, 37: 107–111.

    Google Scholar 

  21. Gitter M, Bradley R, Blampied PH (1980) Listeria monocytogenes infection in bovine mastitis. Vet Rec, 107: 390–393.

    CAS  Google Scholar 

  22. Goodenough ER, Kleyn DH (1976) Qualitative and quantitative changes in carbohydrates during the manufacture of yoghurt. J Dairy Sci, 59: 45–47.

    CAS  Google Scholar 

  23. Grant IR, Ball HJ, Rowe MT (2002a) Incidence of Mycobacterium paratuberculosis in bulk raw and commercially pasteurized cows’ milk from approved dairy processing establishments in the United Kingdom. Appl Environ Microbiol, 68: 2428–2435.

    Article  CAS  Google Scholar 

  24. Grant IR, Hitchings EI, McCartney A, Ferguson F, Rowe MT (2002b) Effect of commercial-scale high-temperature, short-time pasteurization on the viability of Mycobacterium paratuberculosis in naturally infected cows’ milk. Appl Environ Microbiol, 68: 602–607.

    Article  CAS  Google Scholar 

  25. Grant IR, Ball HJ, Neill SD, Rowe MT (1996) Inactivation of Mycobacterium paratuberculosis in cows’ milk at pasteurization temperatures. Appl Environ Microbiol, 62: 631–636.

    CAS  Google Scholar 

  26. Gunsalus IC, Shuster CW (1961) Energy yielding metabolism in bacteria. In: Gunsalus IC, Stanier RY (eds) The Bacteria, vol. 2. Academic Press, New York, pp. 1–58.

    Google Scholar 

  27. Guraya R, Frank JF, Hassan AN (1998) Effectiveness of salt, pH, and diacetyl as inhibitors of Escherichia coli O157:H7 in dairy foods stored at refrigeration temperatures. J Food Protect, 61: 1098–1102.

    CAS  Google Scholar 

  28. Hamann WT, Marth EH (1984) Survival of Streptococcus thermophilus and Lactobacillus bulgaricus in commercial and experimental yogurts. J Food Protect, 47: 781–786.

    Google Scholar 

  29. Harlander SK, McKay LL (1984) Transformation of Streptococcus sanguis Challis with Streptococcus lactis plasmid DNA. Appl Environ Microbiol, 48: 342–346.

    CAS  Google Scholar 

  30. Harlander SK, McKay LL, Schachtels CF (1984) Molecular cloning of the lactose-metabolizing genes from Streptococcus lactis. Appl Environ Microbiol, 48: 347–351.

    CAS  Google Scholar 

  31. Harris JE, Lammerding AM (2001) Crohn’s disease and Mycobacterium avium subsp. paratuberculosis: Current issues. J Food Protect, 64: 2103–2110.

    CAS  Google Scholar 

  32. Headrick ML, Korangy S, Bean NH, Angulo FJ, Altekruse SF, Potter ME, Klontz KC (1998) The epidemiology of rawmilk-associated foodborne disease outbreaks reported in the United States, 1973 through 1992. J Amer Public Health, 88: 1219–1221.

    Article  CAS  Google Scholar 

  33. Henning DR (1999) Personal communication.

    Google Scholar 

  34. Hettinga DH, Reinbold GW (1972) The propionic-acid bacteria — A review. J Milk Food Technol, 35: 295–301, 358–372, 436–447.

    Google Scholar 

  35. Hugo CJ, Segers P, Hoste B, Vancanneyt M, Kersters K (2003) Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol, 53: 771–777.

    Article  CAS  Google Scholar 

  36. Jiang X, Doyle MP (2002) Optimizing enrichment culture conditions for detecting Helicobacter pylori in foods. J Food Protect, 65: 1949–1954.

    Google Scholar 

  37. Johnson MG, Collins EB (1973) Synthesis of lipoic acid by Streptococcus faecalis 10C1 and endproducts produced anaerobically from low concentrations of glucose. J Gen Microbiol, 78: 47–55.

    CAS  Google Scholar 

  38. Klaenhammer TR (2001) Probiotics and prebiotics. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food Microbiology: Fundamentals and Frontiers (2nd ed) ASM Press, Washington DC., pp. 97–811.

    Google Scholar 

  39. Klein G, Pack A, Reuter G (1998) Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany. Appl Environ Microbiol, 64: 1825–1830.

    CAS  Google Scholar 

  40. Klijn N, Nieuwenhof FFJ, Hoolwerf JD, van derWaals CB, Weerkamp AH (1995) Identification of Clostridium tyrobutyricum as the causative agent of late blowing in cheese by species-specific PCR amplification. Appl Environ Microbiol, 61: 2919–2924.

    CAS  Google Scholar 

  41. Kretchmer N (1972) Lactose and lactase. Sci Am, 227(10): 71–78.

    CAS  Google Scholar 

  42. Loessner MJ, Maier SK, Schiwek P, Scherer S (1997) Long-chain polyphosphates inhibit growth of Clostridium tyrobutyricum in processed cheese spreads. J Food Protect, 60: 493–498.

    CAS  Google Scholar 

  43. London J (1976) The ecology and taxonomic status of the lactobacilli. Ann Rev Microbiol, 30: 279–301.

    Article  CAS  Google Scholar 

  44. Marth EH (1974) Fermentations. In: Webb BH, Johnson AH, Alford JA (eds) Fundamentals of Dairy Chemistry. AVI, Westport, CT.

    Google Scholar 

  45. McComas KA Jr, Gilliland SE (2003) Growth of probiotic and traditional yogurt cultures in milk supplemented with whey protein hydrolysate. J Food Sci, 68: 2090–2095.

    Article  CAS  Google Scholar 

  46. Meer RR, Baker J, Bodyfelt FW, Griffiths MW (1991) Psychrotrophic Bacillus spp. in fluid milk products: A review. J Food Protect, 54: 969–979.

    Google Scholar 

  47. Moustafa MK, Admed AAH, Marth EH (1983) Occurrence of Yersinia enterocolitica in raw and pasteurized milk. J Food Protect, 46: 276–278.

    Google Scholar 

  48. Mundt JO (1975) Unidentified streptococci from plants. Int J Syst Bacteriol, 25: 281–285.

    Google Scholar 

  49. Muraoka W, Gay C, Knowles D, Borucki M (2003) Prevalence of Listeria monocytogenes subtypes in bulk milk of the Pacific Northwest. J Food Protect, 66: 1413–1419.

    Google Scholar 

  50. Murinda SE, Nguyen KT, Ivey SJ, Gillespie BE, Almeida RA, Draughon FA, Oliver SP (2002) Prevalence and molecular characterization of Escherichia coli O157:H7 in bulk tank milk and fecal samples from cull cows: A 12-month survey of dairy farms in east Tennessee. J Food Protect, 65: 752–759.

    CAS  Google Scholar 

  51. Murphy SC, Boor KJ (2000) Trouble-shooting sources and causes of high bacteria counts in raw milk. Dairy Fd Environ Sanit, 20: 606–611.

    Google Scholar 

  52. Newcomer AD, Park HS, O’Brien PC, McGill DB (1983) Response of patients with irritable bowel syndrome and lactase deficiency using unfermented acidophilus milk. Am J Clin Nutr, 38: 257–263.

    CAS  Google Scholar 

  53. National Academy of Science, USA (1992). Applications of Biotechnology to Traditional Fermented Foods. National Academy Press, Washington, DC.

    Google Scholar 

  54. Ouwehand AC, Salminen SJ (1998) The health effects of cultured milk products with viable and non-viable bacteria. Int Dairy J, 8: 749–758.

    Article  Google Scholar 

  55. Pederson CS (1979) Microbiology of Food Fermentations (2nd ed). AVI, Westport, CT.

    Google Scholar 

  56. Pettersson B, Lembke F, Hammer P, Stackebrandt E, Priest FG (1996) Bacillus sporothermodurans, a new species producing highly heat-resistant endospores. Int J System Bacteriol, 46: 759–764.

    CAS  Google Scholar 

  57. Prescott SC, Dunn CG (1957) Industrial Microbiology. McGraw-Hill, New York.

    Google Scholar 

  58. Radke-Mitchell L, Sandine WE (1984) Associative growth and differential enumeration of Streptococcus thermophilus and Lactobacillus bulgaricus: A review. J Food Protect, 47: 245–248.

    Google Scholar 

  59. Rosen G (1958). A History of Public Health. MD Publications, New York, pp. 358–360.

    Book  Google Scholar 

  60. Roth LA, Clegg LFL, Stiles ME (1971) Coliforms and shelf life of commercially produced cottage cheese. Can Inst Food Technol J, 4: 107–111.

    Google Scholar 

  61. Rudolf M, Scherer S (2001) High incidence of Listeria monocytogenes in European red smear cheese. Int J Food Microbiol, 63: 91–98.

    Article  Google Scholar 

  62. Salminen S, Ouwehand A, Benno YH, Lee YK (1999) Probiotics: How should they be defined? Trends Food Sci Technol, 10: 107–110.

    Article  CAS  Google Scholar 

  63. Sanders ME (1999) Probiotics. Food Technol, 53(11): 67–77.

    Google Scholar 

  64. Sandine WE, Radich PC, Elliker PR (1972) Ecology of the lactic streptococci: A review. J Milk Food Technol, 35: 176–185.

    Google Scholar 

  65. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev, 36: 407–477.

    CAS  Google Scholar 

  66. Schubert K, Ludwig W, Springer N, Kroppenstedt RM, Accolas JP, Fiedler F (1996) Two coryneform bacteria isolated from the surface of French Gruyère and Beaufort cheeses are new species of the genus Brachybacterium: Brachybacterium alimentarium sp. nov. and Brachybacterium tyrofermentans sp. nov. Int J Syst Bacteriol, 46: 81–87.

    Article  CAS  Google Scholar 

  67. Shin MS, Lee JH, Pestka JJ, Ustunol Z (2000) Viability of bifidobacteria in commercial dairy products during refrigerated storage. J Food Protect, 63: 327–331.

    CAS  Google Scholar 

  68. Shortt C (1998) The probiotic century: Historical and current perspectives. Trends Food Sci Technol, 10: 411–417.

    Article  Google Scholar 

  69. Stabel JR, Steadham EM, Bolin CA (1997). Heat inactivation of Mycobacterium paratuberculosis in raw milk: Are current pasteurization conditions effective? Appl Environ Microbiol, 63: 4975–4977.

    CAS  Google Scholar 

  70. Stamer JR (1976). Lactic acid bacteria. In: deFigueiredo MP, Splittstoesser DF (eds) Food Microbiology: Public Health and Spoilage Aspects. Kluwer Academic Publishers, New York, pp. 404–426.

    Google Scholar 

  71. Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol, 36: 1–29.

    Article  CAS  Google Scholar 

  72. Stouthamer AH (1969) Determination and significance of molar growth yields. Methods Microbiol, 1: 629–663.

    Article  CAS  Google Scholar 

  73. Sung N, Collins MT (2000) Effect of three factors in cheese production (pH, salt, and heat) on Mycobacterium avium subsp. paratuberculosis viability. Appl Environ Microbiol, 66: 1334–1339.

    Article  CAS  Google Scholar 

  74. Thorel MF, Krichevsky M, Levy-Frébault VV (1990) Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Mycobacterium avium subsp. avium subsp. nov., and Mycobacterium avium subsp. silvaticum subsp. nov. Int J Syst Bacteriol, 40: 254–260.

    CAS  Google Scholar 

  75. Tibana A, Warnken MB, Nunes MP, Ricciaradi ID, Noleto ALS (1987) Occurrence of Yersinia species in raw and pasteurized milk in Rio de Janeiro, Brazil. J Food Protect, 50: 580–583.

    Google Scholar 

  76. Vancanneyt M, Mengaud J, Cleenwerck I, Vanhonacker K, Hoste H, Dawyndt P, Degivry MC, Ringuet D, Janssens D, Swings J (2004) Reclassification of Lactobacillus kefirgranumTakizawa et al. 1994 Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov. and emended description of L. kefiranofaciens Fujisawa et al. 1988. Int J Syst Evol Microbiol, 54: 551–556.

    Article  CAS  Google Scholar 

  77. Vaclavik VA, Christian EW (2003) Essentials of Food Science (2nd ed). Springer, New York.

    Google Scholar 

  78. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev, 64: 655–671.

    Article  CAS  Google Scholar 

  79. Vieira ER (1996) Elementary Food Science (4th ed). Kluwer/Plenum Publishing, New York.

    Google Scholar 

  80. Yukphan P, Potacharoen W, Tanasupawat S, Tanticharoen M, Yamada Y (2004) Asaia krungthepensis sp. nov., an acetic acid bacterium in the alpha-Proteobacteria. Int J Syst Evol Microbiol, 54: 313–316.

    Article  CAS  Google Scholar 

  81. Yokota A, Tamura T, Takeuchi M, Weiss N, Stackebrandt E (1994) Transfer of Propionibacterium innocuum Pitcher and Collins 1991 to Propioniferax gen. nov. as Propioniferax innocua comb. nov. Int J Syst Bacteriol, 44: 579–582.

    Article  CAS  Google Scholar 

  82. Zhao T, Doyle MP, Berg DE (2000) Fate of Campylobacter jejuni in butter. J Food Protect, 63: 120–122.

    CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

(2009). Latte, fermentazione e prodotti lattiero-caseari fermentati e non fermentati. In: Pulvirenti, A. (eds) Microbiologia degli alimenti. Food. Springer, Milano. https://doi.org/10.1007/978-88-470-0786-4_7

Download citation

Publish with us

Policies and ethics