Skip to main content

Parametri che influenzano la crescita microbica negli alimenti

  • Chapter
Book cover Microbiologia degli alimenti

Part of the book series: Food ((FOOD))

  • 1059 Accesses

Estratto

Poiché i nostri alimenti sono di origine animale e/o vegetale, è utile prendere in esame le caratteristiche dei loro tessuti che influenzano la crescita microbica. Tutti i vegetali e gli animali, che costituiscono la nostra fonte di cibo, hanno sviluppato meccanismi di difesa contro l’invasione e la proliferazione dei microrganismi; alcuni di tali meccanismi persistono anche negli alimenti freschi. Considerando attentamente questi fenomeni naturali, è possibile utilizzarli efficacemente, in tutto o in parte, per prevenire o ritardare lo sviluppo di microrganismi patogeni o alteranti nei prodotti in cui sono presenti.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Angelidis AS, Smith GM (2003) Three transportors mediate uptake of glycine betaine and carnitine in Listeria monocytogenes in response to hyperosmotic stress. Appl Environ Microbiol, 69: 1013–1022.

    Article  CAS  Google Scholar 

  2. Barnes EM, Ingram M (1955) Changes in the oxidation-reduction potential of the sterno-cephalicus muscle of the horse after death in relation to the development of bacteria. J Sci Food Agric, 6: 448–455.

    Article  CAS  Google Scholar 

  3. Barnes EM, Ingram M (1956) The effect of redox potential on the growth of Clostridium welchii strains isolated from horse muscle. J Appl Bacteriol, 19: 117–128.

    CAS  Google Scholar 

  4. Baron F, Gautier M, Brule G (1997) Factors involved in the inhibition of Salmonella enteritidis in liquid egg white. J Food Protect, 60: 1318–1323.

    CAS  Google Scholar 

  5. Bate-Smith EC (1948) The physiology and chemistry of rigor mortis, with special reference to the aging of beef. Adv Food Res, 1: 1–38.

    Google Scholar 

  6. Björck L (1978) Antibacterial effect of the lactoperoxidase system on psychrotrophic bacteria in milk. J Dairy Res 45: 109–118.

    Article  Google Scholar 

  7. Björck L, Rosen CG (1976) An immobilized two-enzyme system for the activation of the lactoperoxidase antibacterial system in milk. Biotechnol Bioeng, 18: 1463–1472.

    Article  Google Scholar 

  8. Briskey EJ (1964) Etiological status and associated studies of pale, soft, exudative porcine musculature. Adv Food Res, 13: 89–178.

    CAS  Google Scholar 

  9. Burleson GR, Murray TM, Pollard M (1975) Inactivation of viruses and bacteria by ozone, with and without sonication. Appl Microbiol, 29: 340–344.

    CAS  Google Scholar 

  10. Byun MW, Kwon LJ, Yook HS, Kim KS (1998) Gamma irradiation and ozone treatment for inactivation of Escherichia coli 0157:H7 in culture media. J Food Protect, 61: 728–730.

    CAS  Google Scholar 

  11. Callow EH (1949) Science in the imported meat industry. J R Sanitary Inst, 69: 35–39.

    CAS  Google Scholar 

  12. Charlang G, Horowitz NH (1974) Membrane permeability and the loss of germination factor from Neurospora crassa at low water activities. J Bacteriol, 117: 261–264.

    CAS  Google Scholar 

  13. Christian JHB (1963) Water activity and the growth of microorganisms. In: Leitch JM, Rhodes DN (eds) Recent Advances in Food Science, vol. 3. Butterworths, London, pp. 248–255.

    Google Scholar 

  14. Chung KC, Goepfert JM (1970) Growth of Salmonella at low pH. J Food Sci, 35: 326–328.

    Article  CAS  Google Scholar 

  15. Clark DS, Lentz CP (1973) Use of mixtures of carbon dioxide and oxygen for extending shelf-life of prepackaged fresh beef. Can Inst Food Sci Technol J, 6: 194–196.

    Google Scholar 

  16. Conway EJ, Downey M (1950) pH values of the yeast cell. Biochem J, 47: 355–360.

    CAS  Google Scholar 

  17. Corlett DA Jr, Brown MH (1980) pH and acidity. In: Microbial Ecology of Foods. Academic Press, New York, pp. 92–111.

    Google Scholar 

  18. Daud HB, McMeekin TA, Olley J (1978) Temperature function integration and the development and metabolism of poultry spoilage bacteria. Appl Environ Microbiol, 36: 650–654.

    CAS  Google Scholar 

  19. Edgley M, Brown AD (1978) Response of xerotolerant and nontolerant yeasts to water stress. J Gen Microbiol, 104: 343–345.

    CAS  Google Scholar 

  20. Fraser KR, Sue D, Wiedmann M, Boor K, O’Bryne CP (2003) Role of σB in regulating the compatible solute uptake systems of Listeria monocytogenes: Osmotic induction of opuC is σB dependent. Appl Environ Microbiol, 69: 2015–2022.

    Article  CAS  Google Scholar 

  21. Gardan R, Duché O, Leroy-Sétrin S, European Listeria genome consortium, Labadie J (2003) Role of ctc from Listeria monocytogenes in osmotolerance. Appl Environ Microbiol, 69: 154–161.

    Article  CAS  Google Scholar 

  22. Goepfert JM, Kim HU (1975) Behavior of selected foodborne pathogens in raw ground beef. J Milk Food Technol, 38: 449–452.

    Google Scholar 

  23. Hewitt LF (1950) Oxidation-Reduction Potentials in Bacteriology and Biochemistry (6th ed). Livingston, Edinburgh.

    Google Scholar 

  24. Horner KJ, Anagnostopoulos GD (1973) Combined effects of water activity, pH and temperature on the growth and spoilage potential of fungi. J Appl Bacteriol, 36: 427–436.

    CAS  Google Scholar 

  25. Jakobsen M, Murrell WG (1977) The effect of water activity and the aw-controlling solute on germination of bacterial spores. Spore Res, 2: 819–834.

    Google Scholar 

  26. Jakobsen M, Murrell WG (1977) The effect of water activity and aw-controlling solute on sporulation of Bacillus cereus T. J Appl Bacteriol, 43: 239–245.

    CAS  Google Scholar 

  27. Kamau DN, Doores S, Pruitt KM (1990) Enhanced thermal destruction of Listeria monocytogenes and Staphylococcus aureus by the lactoperoxidase system. Appl Environ Microbiol, 56: 2711–2716.

    CAS  Google Scholar 

  28. Kang CK, Woodburn M, Pagenkopf A, Cheney R (1969) Growth, sporulation, and germination of Clostridium perfringens in media of controlled water activity. Appl Microbiol, 18: 798–805.

    CAS  Google Scholar 

  29. Ko R, Smith LT, Smith GM (1994) Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol, 176: 426–431.

    CAS  Google Scholar 

  30. Marshall BJ, Ohye F, Christian JHB (1971) Tolerance of bacteria to high concentrations of NaCl and glycerol in the growth medium. Appl Microbiol, 21: 363–364.

    CAS  Google Scholar 

  31. Mayerhauser CM (2001) Survival of enterohemorrhagic Escherichia coli O157:H7 in retail mustard. J Food Protect, 64: 783–787.

    CAS  Google Scholar 

  32. Morris EO (1962) Effect of environment on microorganisms. In: Hawthorn J, Leitch JM (eds) Recent Advances in Food Science, vol. 1. Butterworths, London, pp. 24–36.

    Google Scholar 

  33. Mossel DAA, Ingram M (1955) The physiology of the microbial spoilage of foods. J Appl Bacteriol, 18: 232–268.

    CAS  Google Scholar 

  34. Olley J, Ratkowsky DA (1973) The role of temperature function integration in monitoring fish spoilage. Food Technol N Z, 8: 13–17.

    Google Scholar 

  35. Parekh KG, Solberg M (1970) Comparative growth of Clostridium perfringens in carbon dioxide and nitrogen atmospheres. J Food Sci, 35: 156–159.

    Article  CAS  Google Scholar 

  36. Park S, Smith LT, Smith GM (1995) Role of glycine betaine and related osmolytes in osmotic stress adaptation in Yersinia entercolitica ATCC 9610. Appl Environ Microbiol, 61: 4378–4381.

    CAS  Google Scholar 

  37. Peña A, Cinco G, Gomez-Puyou A, Tuena M (1972) Effect of pH of the incubation medium on glycolysis and respiration in Saccharomyces cerevisiae. Arch Biochem Biophys, 153: 413–425.

    Article  Google Scholar 

  38. Pitt JI (1975) Xerophilic fungi and the spoilage of foods of plant origin. In: Duckworth RB (ed) Water Relations of Foods. Academic Press, London, pp. 273–307.

    Google Scholar 

  39. Prior BA (1978). The effect of water activity on the growth and respiration of Pseudomonas fluorescens. J Appl Bacteriol, 44: 97–106.

    CAS  Google Scholar 

  40. Ratkowsky DA, Olley J, McMeekin TA, Ball A (1982) Relationship between temperature and growth rate of bacterial cultures. J Bacteriol, 149: 1–5.

    CAS  Google Scholar 

  41. Rattray JBM, Schibeci A, Kidby DK (1975) Lipids of yeasts. Bacteriol Rev, 39: 197–231.

    CAS  Google Scholar 

  42. Reay GA, Shewan JM (1949) The spoilage of fish and its preservation by chilling. Adv Food Res, 2: 343–398.

    Google Scholar 

  43. Reed RK, Chudek JA, Foster K, Gadd GM (1987) Osmotic significance of glycerol accumulation in exponentially growing yeasts. Appl Environ Microbiol, 53: 2119–2123.

    CAS  Google Scholar 

  44. Reiter B, Harnulv G (1984) Lactoperoxidase antibacterial system: Natural occurrence, biological functions and practical applications. J Food Protect, 47: 724–732.

    CAS  Google Scholar 

  45. Rose AH (1965) Chemical Microbiology. Butterworths, London.

    Google Scholar 

  46. Rothstein A, Demis G (1953) The relationship of the cell surface to metabolism: The stimulation of fermentation by extracellular potassium. Arch Biochem Biophys, 44: 18–29.

    Article  CAS  Google Scholar 

  47. Shelef LA (1983) Antimicrobial effects of spices. J Food Safety, 6: 29–44.

    Article  Google Scholar 

  48. Sherman JM, Holm GE (1922) Salt effects in bacterial growth. II. The growth of Bacterium coli in relation to H-ion concentration. J Bacteriol, 7: 465–470.

    CAS  Google Scholar 

  49. Sleator RD, Hill C (2001) Bacterial osmoadaptation: The role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev, 26: 49–71.

    Article  Google Scholar 

  50. Stier RF, Bell L, Ito KA, Shafer BD, Brown LA, Seeger ML, Allen BH, Porcuna MN, Lerke PA (1981) Effect of modified atmosphere storage on C. botulinum toxigenesis and the spoilage microflora of salmon fillets. J Food Sci, 46: 1639–1642.

    Article  Google Scholar 

  51. Troller JA (1986) Water relations of foodborne bacterial pathogens: an updated review. J Food Protect, 49: 656–670.

    Google Scholar 

  52. Walden WC, Hentges DJ (1975) Differential effects of oxygen and oxidation-reduction potential on the multiplication of three species of anaerobic intestinal bacteria. Appl Microbiol, 30: 781–785.

    CAS  Google Scholar 

  53. Wickramanayake GB, Rubin AJ, Sproul OJ (1984) Inactivation of Giardia lamblia cysts with ozone. Appl Environ Microbiol, 48: 671–672.

    CAS  Google Scholar 

  54. Wodzinski RJ, Frazier WC (1961) Moisture requirements of bacteria. II. Influence of temperature, pH, and maleate concentration on requirements of Aerobacter aerogenes. J Bacteriol, 81: 353–358.

    CAS  Google Scholar 

  55. Zapico P, Gaya P, Nuñez M, Medina M (1994) Activity of goats’ milk lactoperoxidase system on Pseudomonas fluorescens and Escherichia coli at refrigeration temperatures. J Food Protect, 58: 1136–1138.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

(2009). Parametri che influenzano la crescita microbica negli alimenti. In: Pulvirenti, A. (eds) Microbiologia degli alimenti. Food. Springer, Milano. https://doi.org/10.1007/978-88-470-0786-4_3

Download citation

Publish with us

Policies and ethics