Skip to main content

Introduzione ai patogeni associati agli alimenti

  • Chapter
Microbiologia degli alimenti

Part of the book series: Food ((FOOD))

  • 1040 Accesses

Estratto

Diverse malattie infettive possono essere trasmesse dagli alimenti in determinate circostanze, ma ve ne sono alcune che sono contratte esclusivamente o prevalentemente attraverso il consumo di prodotti alimentari. Al primo gruppo appartengono, per esempio, la colite emorragica e la listeriosi, al secondo l’intossicazione botulinica e quella stafilococcica. Nei decenni passati carbonchio e brucellosi venivano contratte attraverso il consumo di animali ammalati, ma poiché l’incidenza di tali malattie si è notevolmente ridotta, esse vengono trasmesse attraverso gli alimenti solo in casi sporadici. Tra i patogeni di origine alimentare riconosciuti vi sono parassiti animali pluricellulari, protozoi, funghi, batteri, virus e prioni (vedi box 22.1). Questo capitolo presenta una visione d’insieme di tali organismi e dei loro habitat generali, delle loro modalità di accesso negli alimenti e dei meccanismi patogenetici generali; si vedrà, inoltre, come essi differiscano da specie o ceppi non patogeni strettamente correlati. Per maggiori dettagli su ciascuno di essi si rimanda ai relativi capitoli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Arizcun C, Vasseur C, Labadie JC (1998) Effect of several decontamination procedures on Listeria monocytogenes growing in biofilms. J Food Protect, 61: 731–734.

    CAS  Google Scholar 

  2. Alfano JR, Collmer A (1997) The type III (Hrp) secretion pathway of plant pathogenic bacteria: Trafficking harpins, Avr proteins, and death. J Bacteriol, 179: 5655–5662.

    CAS  Google Scholar 

  3. Allison MJ, Dalton HP, Escobar MR, Martin CJ (1969) Salmonella choleraesuis infections in man: A report of 19 cases and a critical literature review. South Med J, 62: 593–596.

    CAS  Google Scholar 

  4. Anderson DM, Schneewind O (1997) A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science, 278: 1140–1143.

    Article  CAS  Google Scholar 

  5. Archer DL (1996) Preservation microbiology and safety: Evidence that stress enhances virulence and triggers adaptive mutations. Trends Food Sci Technol, 7: 91–95.

    Article  CAS  Google Scholar 

  6. Bagamboula CF, Uyttendaele M, Debevere J (2002) Acid tolerance of Shigella sonnei and Shigella flexneri. J Appl Bacteriol, 93: 479–486.

    CAS  Google Scholar 

  7. Bagge D, Hjelm M, Johansen C, Huber I, Gram L (2001) Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces. Appl Environ Microbiol, 67: 2319–2325.

    Article  CAS  Google Scholar 

  8. Baumler AJ, Tsolis RM, Ficht TA, Adams LG (1998) Evolution of host adaptation in Salmonella enterica. Infect Immun, 66: 4579–4587.

    CAS  Google Scholar 

  9. Berry ED, Cutter CN (2000) Effects of acid adaptation of Escherichia coli O157:H7 on efficacy of acetic acid spray washes to decontaminate beef carcass tissue. Appl Environ Microbiol, 66: 1493–1498.

    Article  CAS  Google Scholar 

  10. Bieber D, Ramer SW, Wu CY (1998) IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science, 280: 2114–2118.

    Article  CAS  Google Scholar 

  11. Blackman IC, Frank JF (1996) Growth of Listeria monocytogenes as a biofilm on various foodprocessing surfaces. J Food Protect, 59: 827–831.

    Google Scholar 

  12. Boerlin P, Chen S, Colbourne JK (1998) Evolution of enterohemorrhagic Escherichia coli hemolysin plasmids and the locus for enterocyte effacement in Shiga toxin-producing E. coli. Infect Immun, 66: 2553–2561.

    CAS  Google Scholar 

  13. Boland A, Cornelis GR (1998) Role of YopP in suppression of tumor necrosis factor alpha release by macrophages during Yersinia infection. Infect Immun, 66: 1878–1884.

    CAS  Google Scholar 

  14. Borucki MK, Peppin JD, White D, Loge F, Call DR (2003) Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol, 69: 7336–7342.

    Article  CAS  Google Scholar 

  15. Bremer PJ, Mond I, Osborne CM (2001) Survival of Listeria monocytogenes attached to stainless steel surfaces in the presence or absence of Flavobacterium spp. J Food Protect, 64: 1369–1376.

    CAS  Google Scholar 

  16. Buchanan RL, Edelson SG, Boyd G (1999) Effects of pH and acid resistance on the radiation resistance of enterohemorrhagic Escherichia coli. J Food Protect, 62: 219–228.

    CAS  Google Scholar 

  17. Buswell CM, Herlihy YM, Lawrence LM, McGuiggan JT, Marsh PD, Keevil CW, Leach SA (1998) Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent antibody and-rRNA staining. Appl Environ Microbiol, 64: 733–741.

    CAS  Google Scholar 

  18. Carpenter B, Cerf O (1993) Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol, 75: 499–511.

    Google Scholar 

  19. CDC (2008) Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food — 10 States, 2007. Morb Mortal Wkly Rep, 57: 366–370.

    Google Scholar 

  20. Cheetham BF, Katz ME (1995) A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol, 18: 201–208.

    Article  CAS  Google Scholar 

  21. Christensen H, Nordentoft S, Olsen JE (1998) Phylogenetic relationships of Salmonella based on rRNA sequences. Int J Syst Bacteriol, 48: 605–610.

    CAS  Google Scholar 

  22. Chumkhunthod P, Schraft H, Griffiths MW (1998) Rapid monitoring method to assess efficacy of sanitizers against Pseudomonas putida biofilms. J Food Protect, 61: 1043–1046.

    CAS  Google Scholar 

  23. Cloak OM, Solow BT, Briggs CE, Chen CY, Fratamico PM (2002) Quorum sensing and production of autoinducer-2 in Campylobacter spp., Escherichia coli O157:H7, and Salmonella enterica serovar Typhimurium in foods. Appl Environ Microbiol, 68: 4666–4671.

    Article  CAS  Google Scholar 

  24. Coconnier MH, Dlissi E, Robard N (1998) Listeria monocytogenes stimulates mucus exocytosis in cultured human polarized mucosecreting intestinal cells through action of listeriolysin O. Infect Immun, 66: 3673–3681.

    CAS  Google Scholar 

  25. Cornelis GR, Wolf-Watz H (1997) The Yersinia Yop virulon: A bacterial system for subverting eukaryotic cells. Mol Microbiol, 23: 861–867.

    Article  CAS  Google Scholar 

  26. Costerton JW (1994) Biofilms, the customized microniche. J Bacteriol, 176: 2137–2142.

    CAS  Google Scholar 

  27. Cotter PD, Hill C (2003) Surviving the acid test: Responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev, 67: 429–453.

    Article  CAS  Google Scholar 

  28. D’Aoust JY (1997) Salmonella species. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food Microbiology — Fundamentals and Frontiers. ASM Press, Washington, DC., pp. 129–158.

    Google Scholar 

  29. Dack GM, Cary WE, Woolpert O, Wiggers H (1930) An outbreak of food poisoning proved to be due to a yellow hemolytic staphylococcus. J Prev Med, 4: 167–175.

    Google Scholar 

  30. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280: 295–298.

    Article  CAS  Google Scholar 

  31. Davis MJ, Coote PJ, O’Byrne CP (1996) Acid tolerance in Listeria monocytogenes: The adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance. Microbiology, 142: 2975–2982.

    CAS  Google Scholar 

  32. Dean-Nystrom EA, Bosworth BT, Moon HW, O’Brien AD (1998) Escherichia coli O157:H7 requires intimin for enteropathogenicity in calves. Infect Immun, 66: 4560–4563.

    CAS  Google Scholar 

  33. Decatur AL, Portnoy DA (2000) A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science, 290: 992–995.

    Article  CAS  Google Scholar 

  34. Degrassi G, Anguilar A, Bosco M, Zahariev S, Pongor S, Venturi V (2002) Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: Cross-talk with quorum sensing bacterial sensors. Curr Microbiol, 45: 250–254.

    Article  CAS  Google Scholar 

  35. De Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun, 68: 4839–4849.

    Article  Google Scholar 

  36. Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acylhomoserine lactonases from Bacillus species. Appl Environ Microbiol, 68: 1754–1759.

    Article  CAS  Google Scholar 

  37. Donnenberg MS, Kaper JB, Finlay BB (1997) Interactions between enteropathogenic Escherichia coli and host epithelial cells. Trends Microbiol, 5: 109–114.

    Article  CAS  Google Scholar 

  38. Dunny GM, Leonard BAB (1997) Cell-cell communication in Gram-positive bacteria. Ann Rev microbiol, 51: 527–564.

    Article  CAS  Google Scholar 

  39. DuPont HL, Levine MM, Hornick RB (1989) Inoculum size in shigellosis and implications for expected mode of transmission. J Infect Dis, 159: 1126–1128.

    CAS  Google Scholar 

  40. Elhanafi D, Leenanon B, Bang W, Drake MA (2004) Impact of cold and cold-acid stress on poststress tolerance and virulence factor expression of Escherichia coli O157:H7. J Food Protect, 67: 19–26.

    CAS  Google Scholar 

  41. Falkow S (1996) The evolution of pathogenicity in Escherichia, Shigella, and Salmonella. In: Neidhardt FC (ed) Escherichia coli and Salmonella — Cellular and Molecular Biology (2nd ed). ASM Press, Washington, DC., pp. 2723–2729.

    Google Scholar 

  42. Faruque SM, Asadulghani, Abdul Alim ARM, Albert MJ, Islam KMN, Mekalanos JJ (1998) Induction of the lysogenic phage encoding cholera toxin in naturally occurring strains of toxigenic Vibrio cholerae O1 and O139. Infect Immun, 66: 3752–3757

    CAS  Google Scholar 

  43. Feng PK, Lampel A, Karch H (1998) Genotypic and phenotypic changes in the emergence of Escherichia coli O157:H7. J Infect Dis, 177: 1750–1753.

    Article  CAS  Google Scholar 

  44. Ferreira A, Sue D, O’Byrne CP, Boor KJ (2003) Role of Listeria monocytogenes σB in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl Environ Microbiol, 69: 2692–2698.

    Article  CAS  Google Scholar 

  45. Frank JF, Koffi RA (1990) Surface-adherent growth of Listeria monocytogenes is associated with increased resistance to surfactant sanitizers and heat. J Food Protect, 53: 550–554.

    Google Scholar 

  46. Fratamico PM (2003) Tolerance to stress and ability of acid-adapted and non-acid adapted Salmonella enterica serovar Typhimurium DT104 to invade and survive in mammalian cells in vitro. J Food Protect, 66: 1115–1125.

    Google Scholar 

  47. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: The Lux-R-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol, 176: 269–275.

    CAS  Google Scholar 

  48. Galán JE (1996) Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol, 20: 263–271.

    Article  Google Scholar 

  49. Gellin BG, Broome CV (1989) Listeriosis. JAMA, 261: 1313–1320.

    Article  CAS  Google Scholar 

  50. Gorden J, Small PLC (1993) Acid resistance in enteric bacteria. Infect Immun, 61: 364–367.

    CAS  Google Scholar 

  51. Gram L, Christensen AB, Ravn L, Molin S, Givskov M (1999) Production of acylated homoserine lactones by psychrotrophic members of the Enterobacteriaceae isolated from foods. Appl Environ Microbiol, 65: 3458–3463.

    CAS  Google Scholar 

  52. Groisman EA, Ochman H (1997) How Salmonella became a pathogen. Trends Microbiol, 9: 343–349.

    Article  Google Scholar 

  53. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Ann Rev Microbiol, 54: 641–679.

    Article  CAS  Google Scholar 

  54. Holden MTG, Chhabra SR, de Nys R et al. (1999) Quorum-sensing cross talk: Isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol Microbiol, 33: 1254–1266.

    Article  CAS  Google Scholar 

  55. Humphrey TJ, Richardson NP, Statton KM, Rowbury RJ (1993) Acid habituation in Salmonella Enteritidis PT4: Impact of inhibition of protein synthesis. Lett Appl Microbiol, 16: 228–230.

    Article  CAS  Google Scholar 

  56. Ikeda JS, Samelis J, Kendall PA, Smith GC, Sofos JN (2003) Acid adaptation does not promote survival or growth of Listeria monocytogenes on fresh beef following acid and nonacid decontamination treatments. J Food Protect, 66: 985–992.

    CAS  Google Scholar 

  57. Jacewicz MS, Acheson DWK, Binion DG, West GA, Lincicome LL, Fiocchi C, Keusch GT (1999) Responses of human intestinal microvascular endothelial cells to Shiga toxins 1 and 2 and pathogenesis of hemorrhagic colitis. Infect Immun, 67: 1439–1444.

    CAS  Google Scholar 

  58. Jensen VB, Harty JT, Jones BD (1998) Interactions of the invasive pathogens. Salmonella Typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer’s patches. Infect Immun, 66: 3758–3766.

    CAS  Google Scholar 

  59. Ji GY, Beavis RC, Novick RP (1995) Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci USA, 92: 12055–12059.

    Article  CAS  Google Scholar 

  60. Jones BD, Falkow S (1994) Identification and characterization of a Salmonella Typhimurium oxygen-regulated gene required for bacterial internalization. Infect Immun, 62: 3745–3752.

    CAS  Google Scholar 

  61. Karatzas KAG, Bennikk MHJ (2002) Characterization of a Listeria monocytogenes Scott A isolate with high tolerance towards high hydrostatic pressure. Appl Environ Microbiol, 68: 3183–3189.

    Article  CAS  Google Scholar 

  62. Kleerebezem M, Quadri LEN, Kulpers OP, de Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol, 24: 895–904.

    Article  CAS  Google Scholar 

  63. Kim KY, Frank JF (1995) Effect of nutrients on biofilm formation by Listeria monocytogenes on stainless steel. J Food Protect, 58: 24–28.

    Google Scholar 

  64. Koo J, DePaola A, Marshall DL (2000) Impact of acid on survival of Vibrio vulnificus and Vibrio vulnificus phage. J Food Protect, 63: 1049–1052.

    CAS  Google Scholar 

  65. Koutsoumanis KP, Kendall PA, Sofos JN (2003) Effect of food processing-related stresses on acid tolerance of Listeria monocytogenes. Appl Environ Microbiol, 69: 7514–7516.

    Article  CAS  Google Scholar 

  66. Kubori T, Matsushima Y, Nakamura D et al. (1998) Supramolecular structure of the Salmonella Typhimurium type III protein secretion system. Science, 280: 602–605.

    Article  CAS  Google Scholar 

  67. Lecuit M, Vandormael-Pournin S, Lefort J et al. (2001) A transgenic model for listeriosis: Role of internalin in crossing the intestinal barrier. Science, 292: 1722–1725.

    Article  CAS  Google Scholar 

  68. LcClerc JE, Li B, Payne WL, Cebula TA (1996) High mutation frequencies among Escherichia coli and Salmonella pathogens. Science, 274: 1208–1211.

    Article  Google Scholar 

  69. Leuschner RGK, Boughtflower MP (2001) Standardized laboratory-scale preparation of mayonnaise containing low levels of Salmonella enterica serovar Enteritidis. J Food Protect, 64: 623–629.

    CAS  Google Scholar 

  70. LeClerc JE, Li B, Payne WL, Cebula TA (1996) High mutation frequencies among Escherichia coli and Salmonella pathogens. Science, 274: 1208–1211.

    Article  CAS  Google Scholar 

  71. Marsh EJ, Luo H, Wang H (2003) Characteristics of biofilm development by Listeria monocytogenes strains. FEMS Microbiol Lett, 228: 203–210.

    Article  Google Scholar 

  72. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis, 5: 607–625.

    Article  CAS  Google Scholar 

  73. McLean RJC, Whiteley M, Stickler DJ, Fuqua WC (1997) Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol Lett, 154: 259–263.

    Article  CAS  Google Scholar 

  74. Michiels CW, Schellekens M, Soontjens CCF, Hauben KJA (1997) Molecular and metabolis typing of resident and transient fluorescent pseudomonad flora from a meat mincer. J Food Protect, 60: 1515–1519.

    Google Scholar 

  75. O’Brien D, Holmes RK (1996) Protein toxins of Escherichia coli and Salmonella. In: Neidhardt FC (ed) Escherichia coli and Salmonella — Cellular and Molecular Biology (2nd ed). ASM Press, Washington, DC., pp. 2788–2802.

    Google Scholar 

  76. O’Driscoll B, Gahan CGM, Hill C (1996) Adaptive acid tolerance response in Listeria monocytogenes: Isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl Environ Microbiol, 62: 1693–1698.

    CAS  Google Scholar 

  77. Oh DH, Marshall DL (1996) Monolaurin and acetic acid inactivation of Listeria monocytogenes attached to stainless steel. J Food Protect, 59: 249–252.

    CAS  Google Scholar 

  78. Otto M, Echner H, Voelter W, Götz F (2001) Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun, 69: 1957–1960.

    Article  CAS  Google Scholar 

  79. O’Riordan M, Moors MA, Portnoy DA (2003) Listeria intracellular growth and virulence require host-derived lipoic acid. Science, 302: 462–464.

    Article  CAS  Google Scholar 

  80. Perna NT, Mayhew GF, Pósfai G, Elliott S, Donnenberg MS, Kaper JB, Blattner FR (1998) Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect Immun, 66: 3810–3817.

    CAS  Google Scholar 

  81. Phan-Thanh L, Mahouin F, Aligé S (2000) Acid responses of Listeria monocytogenes. Int J Food Microbiol, 55: 121–126.

    Article  CAS  Google Scholar 

  82. Pruzzo C, Tarsi R, del Mar Lleò M, Signoretto C, Zampini M, Colwell RR, Canepari P (2002) In vitro adhesion to human cells by viable but nonculturable Enterococcus faecalis. Curr Microbiol, 45: 105–110.

    Article  CAS  Google Scholar 

  83. Ren D, Sims JJ, Wood TK (2002) Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-brome-5-(bromomethylene)-3-butyl-2-(5H)-furanone. Lett Appl Microbiol, 34: 293–299.

    Article  CAS  Google Scholar 

  84. Richter-Dahlfors AA, Finlay BB (1997) Salmonella interactions with host cells. In: Kaufmann SHE (ed) Host Response to Intracellular Pathogens. R.G. Landes Co, Austin, TX, pp. 251–270.

    Google Scholar 

  85. Samelis J, Sofos JN, Ikedak JS, Kendall PA, Smith GC (2002) Exposure to non-acid fresh meat decontamination washing fluids sensitizes Escherichia coli O157:H7 to organic acids. Lett Appl Microbiol, 34: 7–12.

    Article  CAS  Google Scholar 

  86. Samelis J, Sofos JN, Kendall PA, Smith GC (2001) Influence of the natural microbial flora on the acid tolerance response of Listeria monocytogenes in a model system of fresh meat decontamination fluids. Appl Environ Microbiol, 67: 2410–2420.

    Article  CAS  Google Scholar 

  87. Saphra I, Wassermann M (1954) Salmonella choleraesuis:A clinical and epidemiological evaluation of 329 infections identified 1940 and 1954 in the New York Salmonella Center. Am J Med Sci, 228: 525–533.

    Article  CAS  Google Scholar 

  88. Sasahara KC, Zottola EA (1993) Biofilm formation by Listeria monocytogenes utilizes a primary colonizing microorganism in flowing systems. J Food Protect, 56: 1022–1028.

    Google Scholar 

  89. Schauer DB, Falkow S (1993) Attaching and effacing locus of a Citrobacter freundii biotype that causes transmissible murine colonic hyperplasia. Infect Immun, 61: 2486–2492.

    CAS  Google Scholar 

  90. Schubert S, Rakin A, Karch H et al. (1998) Prevalence of the “high-pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun, 66: 480–485.

    CAS  Google Scholar 

  91. Sibelius U, Schulz EC, Rose F, Hattar K, Jacobs T, Weiss S, Chakraborty T, Seeger W, Grimminger F (1999) Role of Listeria monocytogenes exotoxins listeriolysin and phosphatidylinositol-specific phospholipase C in activation of human neutrophils. Infect Immun, 67: 1125–1130.

    CAS  Google Scholar 

  92. Silhavy TJ (1997) Death by lethal injection. Science, 278: 1085–1086.

    Article  CAS  Google Scholar 

  93. Sperandio V, Torres AG, Girón JA, Kaper JB (2001) Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol, 183: 5187–5197.

    Article  CAS  Google Scholar 

  94. Surette MG, Miller MB, Bassler BL (1999) Quorum sensing in Escherichia coli, Salmonella Typhimurium, and Vibrio harveyi: A new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA, 96: 1639–1644.

    Article  CAS  Google Scholar 

  95. Trucksis M, Michalski J, Deng YK, Kaper JB (1998) The Vibrio cholerae genome contains two unique circular chromosomes. Proc Natl Acad Sci USA, 95: 14459–14464.

    Article  Google Scholar 

  96. van der Velden AWM, Bäumler AJ, Tsolis RM, Heffron F (1998) Multiple fimbrial adhesins are required for full virulence of Salmonella Typhimurium in mice. Infect Immun, 66: 2803–2808.

    Google Scholar 

  97. Venturi V (2003) Control of rpoS transcription in Escherichia coli and Pseudomonas: Why so different? Mol Microbiol, 49: 1–9.

    Article  CAS  Google Scholar 

  98. Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science, 272: 1910–1914.

    Article  CAS  Google Scholar 

  99. Wallis TS, Galyov EE (2000) Molecular basis of Salmonella induced enteritis. Mol Microbiol, 36: 997–1005.

    Article  CAS  Google Scholar 

  100. Waterman SR, Small PLC (1996) Characterization of the acid resistance phenotype and rpoS alleles of Shiga-like toxin-producing Escherichia coli. Infect Immun, 64: 2808–2811.

    CAS  Google Scholar 

  101. Waterman SR, Small PLC (1998) Acid-sensitive enteric pathogens are protected from killing under extremely acidic conditions of pH 2.5 when they are inoculated onto certain solid food sources. Appl Environ Microbiol, 64: 3882–3886.

    CAS  Google Scholar 

  102. Wemekamp-Kamphuis HH, Wouters JA, de Leeuw PPLA, Hain T, Chakraborty T, Abee T (2004) Identification of sigma factor σB — controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl Environ Microbiol, 70: 3457–3466.

    Article  CAS  Google Scholar 

  103. Whitechurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science, 295: 1487.

    Article  Google Scholar 

  104. Whittam TS (1996) Genetic variation and evolutionary processes in natural populations of Escherichia coli. In: Neidhardt FC (ed) Escherichia coli and Salmonella — Cellular and Molecular Biology (2nd ed). ASM Press, Washington, DC., pp. 2708–2720.

    Google Scholar 

  105. Wilmes-Riesenberg MR, Bearson B, Foster JW, Curtiss R III (1996) Role of the acid tolerance response in virulence of Salmonella Typhimurium. Infect Immun, 64: 1085–1092.

    CAS  Google Scholar 

  106. Wong HC, Peng PY, Han JM, Chang CY, Lan SL (1998) Effect of mild acid treatment on the survival, enteropathogenicity, and protein production in Vibrio parahaemolyticus. Infect Immun, 66: 3066–3071.

    CAS  Google Scholar 

  107. Yuk HG, Marshall DL (2003) Heat adaptation alters Escherichia coli O157:H7 membrane lipid composition and verotoxin production. Appl Environ Microbiol, 69: 5115–5119.

    Article  CAS  Google Scholar 

  108. Zhang V, Griffiths MW (2003) Induced expression of the heat shock protein genes uspA and grpE during starvation at low temperatures and their influence on thermal resistance of Escherichia coli O157:H7. J Food Protect, 66: 2045–2050.

    CAS  Google Scholar 

  109. Zottola EA (1994) Microbial attachment and biofilm formation: A new problem for the food industry? Food Technol, 48(7): 107–114.

    Google Scholar 

  110. Zychlinsky A, Prevost MC, Sansonetti PJ (1992) Shigella flexneri induces apoptosis in infected macrophages. Nature, 358: 167–169.

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

(2009). Introduzione ai patogeni associati agli alimenti. In: Pulvirenti, A. (eds) Microbiologia degli alimenti. Food. Springer, Milano. https://doi.org/10.1007/978-88-470-0786-4_22

Download citation

Publish with us

Policies and ethics