Skip to main content

Protezione degli alimenti mediante sostanze chimiche e sistemi di biocontrollo

  • Chapter
Microbiologia degli alimenti

Part of the book series: Food ((FOOD))

  • 1069 Accesses

Estratto

L’impiego di sostanze chimiche per prevenire o ritardare l’alterazione degli alimenti deriva in parte dal fatto che tali composti sono utilizzati con grande successo nel trattamento di patologie dell’uomo, degli animali e delle piante. Ciò non implica che qualsivoglia composto chemioterapico possa o debba essere impiegato come conservante per alimenti. D’altra parte vi sono alcuni composti chimici utili come conservanti che potrebbero essere inefficaci o addirittura tossici come chemioterapici. A eccezione di alcuni antibiotici, nessuno dei conservanti per alimenti oggi utilizzati trova un impiego reale per la cura dell’uomo e degli animali. Sebbene molteplici sostanze chimiche abbiano un certo potenziale come conservanti alimentari, solo un numero relativamente piccolo è consentito nei prodotti alimentari, ciò è dovuto in gran parte alle stringenti norme di sicurezza stabilite dalla FDA e in misura minore al fatto che non tutti i composti che mostrano attività antimicrobica in vitro esplicano la stessa azione negli alimenti. Di seguito sono descritti i composti maggiormente utilizzati, le loro modalità di azione — se conosciute — e le tipologie di alimenti in cui vengono impiegati. I conservanti chimici generalmente riconosciuti sicuri (GRAS, generally recognized as safe) sono riassunti nella tabella 13.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Abee T (1995) Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol Lett, 129: 1–10.

    CAS  Google Scholar 

  2. Achen M, Yousef AE (2001) Efficacy of ozone against Escherichia coli O157:H7 on apples. J Food Sci, 66: 1380–1384.

    CAS  Google Scholar 

  3. Alakomi HL, Skytta E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM (2000) Lactic acid permeabilizes Gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol, 66: 2001–2005.

    CAS  Google Scholar 

  4. Amézquita A, Brashears MM (2002) Competitive inhibition of Listeria monocytogenes in ready-toeat meat products by lactic acid bacteria. J Food Protect, 65: 316–325.

    Google Scholar 

  5. Anderson GL, Caldwell KC, Beuchat LR, Williams PL (2003) Interaction of a free-living soil nematode, Caenorhabditis elgans, with surrogates of foodborne pathogenic bacteria. J Food Protect, 66: 1543–1549.

    Google Scholar 

  6. Atterbury RJ, Connerton PL, Dodd CER, Rees CED, Connerton IF (2003) Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Appl Environ Microbiol, 69: 6302–6306.

    CAS  Google Scholar 

  7. Atterbury RJ, Connerton PL, Dodd CER, Rees CED, Connerton IF (2003) Isolation and characterization of Campylobacter bacteriophages from retail poultry. Appl Environ Microbiol, 69: 4511–4518.

    CAS  Google Scholar 

  8. Aymerich MT, Hugas M, Monfort JM (1998) Review: Bacteriocinogenic lactic acid bacteria associated with meat products. Food Sci Technol Int, 4: 141–158.

    Google Scholar 

  9. Banks JG, Board RG (1982) Sulfite inhibition of Enterobacteriacae including Salmonella in British fresh sausage and in culture systems. J Food Protect, 45: 1292–1297, 1301.

    CAS  Google Scholar 

  10. Bari ML, Sabina Y, Isobe S, Uemura T, Isshiki K (2003) Effectiveness of electrolyzed acidic water in killing Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes on the surfaces of tomatoes. J Food Protect, 66: 542–548.

    CAS  Google Scholar 

  11. Bari ML, Inatsu Y, Kawasaki S et al. (2002) Calcinated calcium killing of Escherichia coli 0157:H7, Salmonella, and Listeria monocytogenes on the surface of tomatoes. J Food Protect, 65: 1706–1711.

    CAS  Google Scholar 

  12. Barker C, Park SF (2001) Sensitization of Listeria monocytogenes to low pH, organic acids, and osmotic stress by ethanol. Appl Environ Microbiol, 67: 1594–1600.

    CAS  Google Scholar 

  13. Bedie GK, Samelis J, Sofos JN, Belk KE, Scanga JA, Smith GC (2001) Antimicrobials in the formulation to control Listeria monocytogenes postprocessing contamination on frankfurters stored at 4 °C in vacuum packages. J Food Protect, 64: 1949–1955.

    CAS  Google Scholar 

  14. Berry BW, Blumer TN (1981) Sensory, physical, and cooking characteristics of bacon processed with varying levels of sodium nitrite and potassium sorbate. J Food Sci, 46: 321–327.

    CAS  Google Scholar 

  15. Beuchat LR, Ward TE, Pettigrew CA (2001) Comparison of chlorine and a prototype produce wash product for effectiveness in killing Salmonella and Escherichia coli O157:H7 on alfalfa seeds. J Food Protect, 64: 152–158.

    CAS  Google Scholar 

  16. Blake DF, Stumbo CR (1970) Ethylene oxide resistance of microorganisms important in spoilage of acid and high-acid foods. J Food Sci, 35: 26–29.

    CAS  Google Scholar 

  17. Bosund I (1962) The action of benzoic and salicylic acids on the metabolism of microorganisms. Adv Food Res, 11: 331–353.

    CAS  Google Scholar 

  18. Bowen VG, Deibel RH (1974) Effects of nitrite and ascorbate on botulinal toxin formation in wieners and bacon. In: Proceedings of the Meat Industry Research Conference. American Meat Institute Foundation, Chicago, pp. 63-68.

    Google Scholar 

  19. Branen AL, Davidson PM, Katz B (1980) Antimicrobial properties of phenolic, antioxidants and lipids. Food Technol, 34(5): 42–53, 63.

    Google Scholar 

  20. Bredholt S, Nasbakken T, Holck A (1999) Protective cultures inhibit growth of Listeria monocytogenes and Escherichia coli O157:H7 in cooked, sliced, vacuum-and gas-packaged meat. Int J Food Microbiol, 53: 43–52.

    CAS  Google Scholar 

  21. Breukink E, Wiedemann I, van Kraaij C, Kulpers OP, Sahl HG, de Kruijff B (1999) Use of the cellwall precursor lipid II by a pore-forming peptide antibiotic. Science, 286: 2361–2364.

    CAS  Google Scholar 

  22. Budu-Amoako E, Ablett RF, Harris J, Delves-Broughton J (1999) Combined effect of nisin and moderate heat on destruction of Listeria monocytogenes in cold-pack lobster meat. J Food Protect, 62: 46–50.

    CAS  Google Scholar 

  23. Bullerman LB, Lieu FY, Seier SA (1977) Inhibition of growth and aflatoxin production by cinnamon and clove oils, cinnamic aldehyde and eugenol. J Food Sci, 42: 1107–1109, 1116.

    CAS  Google Scholar 

  24. Buyong N, Kok J, Luchansky JB (1998) Use of a genetically enhanced, pedio-producing starter culture, Lactococcus lactis subsp. lactis MM217, to control Listeria monocytogenes in Cheddar cheese. Appl Environ Microbiol, 64: 4842–4845.

    CAS  Google Scholar 

  25. Byun M-W, Kwon O-J, Yook H-S, Kim K-S (1998) Gamma Irradiation and Ozone Treatment for Inactivation of Escherichia coli O157:H7 in Culture Media. J Food Protect, 61:728–730.

    CAS  Google Scholar 

  26. Caldwell KN, Adler BB, Anderson GL, Williams PI, Beuchat LR (2003) Ingestion of Salmonella enterica serotype Poona by a free-living nematode, Caenorhabditis elegans, and protection against inactivation by produce sanitizers. Appl Environ Microbiol, 69: 4103–4110.

    CAS  Google Scholar 

  27. Callaway TR, Carneiro de Melo AMS, Russell JB (1997) The effect of nisin and monensin on ruminal fermentations in vitro. Curr Microbiol, 35: 90–96.

    CAS  Google Scholar 

  28. Capita R, Alonso-Calleja C, Prieto M, del Camino Garcia-Fernández M, Moreno B (2003) Effectiveness of trisodium phosphate against Listeria monocytogenes on excised and nonexcised chicken skin. J Food Protect, 66: 61–64.

    CAS  Google Scholar 

  29. Carnio MC, Höltzel A, Rudolf M, Henle T, Jung G, Scherer S (2000) The macrocyclic peptide antibiotic micrococcin P1 is secreted by the food-borne bacterium Staphylococcus equorum WS2733 and inhibits Listeria monocytogenes on soft cheese. Appl Environ Microbiol, 66: 2378–2384.

    CAS  Google Scholar 

  30. Cassens RG (1995) Use of sodium nitrite in cured meats today. Food Technol, 49(7): 72–80, 115.

    CAS  Google Scholar 

  31. Castillo A, McKenzie KS, Lucia LM, Acuff GR (2003) Ozone treatment for reduction of Escherichia coli O157:H7 and Salmonella serotype Typhimurium on beef carcass surfaces. J Food Protect, 66: 775–779.

    CAS  Google Scholar 

  32. Cerrutti P, Terebiznik MR, de Huergo MS, Jagus R, Pilosof AMR (2001) Combined effect of water activity and pH on the inhibition of Escherichia coli by nisin. J Food Protect, 64: 1510–1514.

    CAS  Google Scholar 

  33. Chang PC, Akhtar SM, Burke T, Pivnick H (1974) Effect of sodium nitrite on Clostridium botulinum in canned luncheon meat: Evidence for a Perigo-type factor in the absence of nitrite. Can Inst Food Sci Technol J, 7: 209–212.

    CAS  Google Scholar 

  34. Cheng MKC, Levin RE (1970) Chemical destruction of Aspergillus niger conidiospores. J Food Sci, 35: 62–66.

    CAS  Google Scholar 

  35. Christiansen LN, Johnston RW, Kautter DA, Howard JW, Aunan WJ (1973) Effect of nitrite and nitrate on toxin production by Clostridium botulinum and on nitrosamine formation in perishable canned comminuted cured meat. Appl Microbiol, 25: 357–362.

    CAS  Google Scholar 

  36. Christiansen LN, Tompkin RB, Shaparis AB, Kueper TV, Johnston RW, Kautter DA, Kolari OJ (1974) Effect of sodium nitrite on toxin production by Clostridium botulinum in bacon. Appl Microbiol, 27: 733–737.

    CAS  Google Scholar 

  37. Collins-Thompson DL, Sen NP, Aris B, Schwinghamer L (1972) Nonenzymic in vitro formation of nitrosamines by bacteria isolated from meat products. Can J Microbiol, 18: 1968–1971.

    CAS  Google Scholar 

  38. Dack GM, Lippitz G (1962) Fate of staphylococci and enteric microorganisms introduced into slurry of frozen pot pies. Appl Microbiol, 10: 472–479.

    CAS  Google Scholar 

  39. Davidson PM (1983) Phenolic compounds. In: Branen AL, Davidson PM (eds) Antimicrobials in Foods. Marcel Dekker, New York. pp. 37–73.

    Google Scholar 

  40. Davidson PM, Brekke CJ, Branen AL (1981) Antimicrobial activity of butylated hydroxyanisole, tertiary butylhydroquinone, and potassium sorbate in combination. J Food Sci, 46: 314–316.

    CAS  Google Scholar 

  41. Delves-Broughton J (1990) Nisin and its uses as a food preservative. Food Technol, 44(11): 100, 102, 104, 106, 108, 111–112, 117.

    CAS  Google Scholar 

  42. Denny CB, Sharpe LE, Bohrer CW (1961) Effects of tylosin and nisin on canned food spoilage bacteria. Appl Microbiol, 9: 108–110.

    CAS  Google Scholar 

  43. DePaola A, Motes ML, Chan AM, Suttle CA (1998) Phages infecting Vibrio vulnificus are abundant and diverse in oysters (Crassostrea virginica) collected from the Gulf of Mexico. Appl Environ Microbiol, 64: 346–351.

    CAS  Google Scholar 

  44. Dethmers AE, Rock H, Fazio T, Johnston RW (1975) Effect of added sodium nitrite and sodium nitrate on sensory quality and nitrosamine formation in Thuringer sausage. J Food Sci, 40: 491–495.

    CAS  Google Scholar 

  45. Deuel HJ Jr, Calbert CE, Anisfeld L, McKeechan H, Blunden HD (1954) Sorbic acid as a fungistatic agent for foods. II. Metabolism of α,β-unsaturated fatty acids with emphasis on sorbic acid. Food Res, 19: 13–19.

    CAS  Google Scholar 

  46. Deutsch SM, Guezenec S, Piot M, Foster S, Lortal S (2004) Mur-LH, the broad-spectrum endolysin of Lactobacillus helveticus temperate-bacteriophage (Φt0303). Appl Environ Microbiol, 70: 96–103.

    CAS  Google Scholar 

  47. Dimick KP, Alderton G, Lewis JC, Lightbody HD, Fevold HL (1947) Purification and properties of subtilin. Arch Biochem, 15: 1–11.

    CAS  Google Scholar 

  48. Doores S (1983) Organic acids. In: Branen AL, Davidson PM (eds) Antimicrobials in Foods. Marcel Dekker, New York, pp. 75–107.

    Google Scholar 

  49. Doyle MP, Marth EH (1978) Bisulfite degrades aflatoxins. Effect of temperature and concentration of bisulfite. J Food Protect, 41: 774–780.

    CAS  Google Scholar 

  50. Duncan CL, Foster EM (1968) Role of curing agents in the preservation of shelf-stable canned meat products. Appl Microbiol, 16: 401–405.

    CAS  Google Scholar 

  51. Dymicky M, Trenchard H (1982) Inhibition of Clostridium botulinum 62A by saturated n-aliphatic acids, n-alkyl formates, acetates, propionates and butyrates. J Food Protect, 45: 1117–1119.

    CAS  Google Scholar 

  52. Eckert JW (1979) Fungicidal and fungistatic agents: Control of pathogenic microorganisms on fresh fruits and vegetables after harvest. In: Rhodes ME (ed) Food Mycology. Hall, Boston, pp. 164–199.

    Google Scholar 

  53. Eklund T (1985) The effect of sorbic acid and esters of p-hydroxybenzoic acid on the protonmotive force in Escherichia coli membrane vesicles. J Gen Microbiol, 131: 73–76.

    CAS  Google Scholar 

  54. El-Ziney MG, van den Tempel MGT, Debevere J (1999) Application of reuterin produced by Lactobacillus reuteri 12002 for meat decontamination and preservation. J Food Protect, 62: 257–261.

    CAS  Google Scholar 

  55. Entani E, Asai M, Tsujihata S, Tsukamoto Y, Ohta M (1998) Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7. J Food Protect, 61: 953–959.

    CAS  Google Scholar 

  56. Fabrizio KA, Cutter CN (2003) Stability of electrolyzed oxidizing water and its efficacy against cell suspensions of Salmonella Typhimurium and Listeria monocytogenes. J Food Protect, 66: 1379–1384.

    CAS  Google Scholar 

  57. Fisher TL, Golden DA (1998) Survival of Escherichia coli O157:H7 in apple cider as affected by dimethyl dicarbonate, sodium bisulfite, and sodium benzoate. J Food Sci, 63: 904–906.

    CAS  Google Scholar 

  58. Florey HW (1946) The use of micro-organisms for therapeutic purposes. Yale J Biol Med, 19: 101–118.

    Google Scholar 

  59. Fong YY, Chan WC (1973) Bacterial production of di-methyl nitrosamine in salted fish. Nature, 243: 421–422.

    CAS  Google Scholar 

  60. Food and Agriculture Organization/World Health Organization (FAO/WHO) (1976) Evaluation of Certain Food Additives. WHO Technical Report Series 599.

    Google Scholar 

  61. Francis GA, Thomas C, O’Beirne D (1999) Review paper: The microbiological safety of minimally processed vegetables. Int J Food Sci Technol, 34: 1–22.

    CAS  Google Scholar 

  62. Frank JF, Ehlers J, Wicker L (2003) Removal of Listeria monocytogenes and poultry soil-containing biofilms using chemical cleaning and sanitizing agents under static conditions. Food Protect Trends, 23: 654–663.

    Google Scholar 

  63. Freese E, Sheu CW, Galliers E (1973) Function of lipophilic acids as antimicrobial food additives. Nature, 241: 321–325.

    CAS  Google Scholar 

  64. Fung DYC, Lin CCS, Gailani MB (1985) Effect of phenolic antioxidants on microbial growth. CRC Crit Rev Microbiol, 12: 153–183.

    CAS  Google Scholar 

  65. Gaeng S, Scherer S, Neve H, Loessner MJ (2002) Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Appl Environ Microbiol, 66: 2951–2958.

    Google Scholar 

  66. Gailani MB, Fung DYC (1984) Antimicrobial effects of selected antioxidants in laboratory media and in ground pork. J Food Protect, 47: 428–433.

    CAS  Google Scholar 

  67. Garcia A, Mount JR, Davidson PM (2003) Ozone and chlorine treatment of minimally processed lettuce. J Food Sci, 68: 2747–2751.

    CAS  Google Scholar 

  68. Gill AO, Holley RA (2000) Surface application of lysozyme, nisin, and EDTA to inhibit spoilage and pathogenic bacteria on ham and bologna. J Food Protect, 63: 1338–1346.

    CAS  Google Scholar 

  69. Glass KA, Granberg DA, Smith AL, McNamara AM, Hardin M, Mattias J, Ladwig K, Johnson EA (2002) Inhibition of Listeria monocytogenes by sodium diacetate and sodium lactate on wieners and cooked bratwurst. J Food Protect, 65: 116–123.

    CAS  Google Scholar 

  70. Goepfert JM, Kim HU (1975) Behavior of selected foodborne pathogens in raw ground beef. J Milk Food Technol, 35: 449–452.

    Google Scholar 

  71. Goode D, Allen VM, Barrow PA (2003) Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol, 69: 5032–5036.

    CAS  Google Scholar 

  72. Goodridge L, Gallaccio A, Griffiths MW (2003) Morphological, host range, and genetic characterization of two coliphages. Appl Environ Microbiol, 69: 5364–5371.

    CAS  Google Scholar 

  73. Gould GW (1964) Effect of food preservatives on the growth of bacteria from spores. In: Molin G (ed) Microbial Inhibitors in Foods. Almquist & Wiksell, Stockholm, pp. 17–24.

    Google Scholar 

  74. Gould GW, Brown MH, Fletcher BC (1983) Mechanisms of action of food preservation procedures. In: Roberts TA, Skinner FA (eds) Food Microbiology: Advances and Prospects. Academic Press, New York, pp. 67–84.

    Google Scholar 

  75. Gray JI, Pearson AM (1984) Cured meat flavor. Adv Food Res, 29: 1–86.

    CAS  Google Scholar 

  76. Greer GG (1986) Homologous bacteriophage control of Pseudomonas growth and beef spoilage. J Food Protect, 49: 104–109.

    Google Scholar 

  77. Hagler WM Jr, Hutchins JE, Hamilton PB (1982) Destruction of aflatoxin in corn with sodium bisulfite. J Food Protect, 45: 1287–1291.

    CAS  Google Scholar 

  78. Hamilton-Miller JMT (1974) Fungal sterols and the mode of action of the polyene antibiotics. Adv Appl Microbiol, 17: 109–134.

    CAS  Google Scholar 

  79. Harp E, Gilliland SE (2003) Evaluation of a select strain of Lactobacillus delbrueckii subsp. lactis as a biological control agent for pathogens on fresh-cut vegetables stored at 7 °C. J Food Protect, 66: 1013–1018.

    CAS  Google Scholar 

  80. Hawksworth G, Hill MJ (1971) The formation of nitrosamines by human intestinal bacteria. Biochem J, 122: 28–29P.

    Google Scholar 

  81. Hawksworth G, Hill MJ (1971) Bacteria and the N-nitrosation of secondary amines. Brit J Cancer, 25: 520–526.

    CAS  Google Scholar 

  82. Hechelman H, Leistner L (1969) Hemmung von unerwunschtem Schimmelpilzwachstum auf Rohwursten durch Delvocid (Pimaricin). Fleischwirtschaft, 49: 1639–1641.

    Google Scholar 

  83. Herranz C, Chen V, Chung HJ, Cintas LM, Hernández PE, Montville TJ, Chikindas ML (2001) Enterocin P selectively dissipates the membrane potential of Enterococcus faecium T136. Appl Environ Microbiol, 67: 1689–1692.

    CAS  Google Scholar 

  84. Holzapfel WH, Geisen R, Schillinger U (1995) Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int J Food Microbiol, 24: 343–362.

    CAS  Google Scholar 

  85. Holley RA (1981) Prevention of surface mold growth on Italian dry sausage by natamycin and potassium sorbate. Appl Environ Microbiol, 41: 422–429.

    CAS  Google Scholar 

  86. Holyoak CD, Stratford M, McMullin A, Cole MB, Crimmins K, Brown AJP, Coote PJ (1996) Activity of the plasma membrane H-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol, 62: 3158–3164.

    CAS  Google Scholar 

  87. Hoover DG, Steenson LR (eds) (1993) Bacteriocins of Lactic Acid Bacteria. Academic Press, New York.

    Google Scholar 

  88. Huhtanen CN (1980) Inhibition of Clostridium botulinum by spice extracts and aliphatic alcohols. J Food Protect, 43: 195–196, 200.

    CAS  Google Scholar 

  89. Hurst A (1981) Nisin. Adv Appl Microbiol, 27: 85–123.

    CAS  Google Scholar 

  90. Islam M, Chen J, Doyle MP, Chinnan M (2002) Control of Listeria monocytogenes on turkey frankfurters by generally-recognized-as-safe preservatives. J Food Protect, 65: 1411–1416.

    Google Scholar 

  91. Ivey FJ, Shaver KJ, Christiansen LN, Tompkin RB (1978) Effect of potassium sorbate on toxinogenesis by Clostridium botulinum in bacon. J Food Protect, 41: 621–625.

    CAS  Google Scholar 

  92. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of Gram-positive bacteria. Microbiol Rev, 59: 171–200.

    CAS  Google Scholar 

  93. Jacobsen T, Budde BB, Koch AG (2003) Application of Leuconostoc carnosum for biopreservation of cooked meat products. J Appl Microbiol, 95: 242–249.

    CAS  Google Scholar 

  94. Jay JM (1997) Do background microorganisms play a role in the safety of fresh foods? Trends Food Sci Technol, 8: 421–424.

    CAS  Google Scholar 

  95. Jay JM (1982) Antimicrobial properties of diacetyl. Appl Environ Microbiol, 44: 525–532.

    CAS  Google Scholar 

  96. Jay JM (1982) Effect of diacetyl on foodborne microorganisms. J Food Sci, 47: 1829–1831.

    Google Scholar 

  97. Jay JM (1983) Antibiotics as food preservatives. In: Rose AH (ed) Food Microbiology. Academic Press, New York, pp. 117–143.

    Google Scholar 

  98. Jay JM, Rivers GM (1984) Antimicrobial activity of some food flavoring compounds. J Food Safety, 6: 129–139.

    CAS  Google Scholar 

  99. Juglal S, Govinden R, Odhav B (2002) Spice oils for the control of co-occurring mycotoxin-producing fungi. J Food Protect, 65: 683–687.

    CAS  Google Scholar 

  100. Kabara JJ (1983) Medium-chain fatty acids and esters. In: Branen AL, Davidson PM (eds) Antimicrobials in Foods. Marcel Dekker, New York, pp. 109–139.

    Google Scholar 

  101. Kabara JJ, Vrable H, Lie Ken Jie MSF (1977) Antimicrobial lipids: Natural and synthetic fatty acids and monoglycerides. Lipids, 12: 753–759.

    CAS  Google Scholar 

  102. Kang DH, Fung DYC (2000) Stimulation of starter culture for further reduction of foodborne pathogens during salami fermentation. J Food Protect, 63: 1492–1495.

    CAS  Google Scholar 

  103. Katla T, Naterstad K, Vancanneyt M, Swings J, Axelsson L (2003) Differences in susceptibility of Listeria monocytogenes strains to sakacin P, sakacin A, pediocin PA-1, and nisin. Appl Environ Microbiol, 69: 4431–4437.

    CAS  Google Scholar 

  104. Kemp GK, Aldrich ML, Waldroup AL (2000) Acidified sodium chlorite antimicrobial treatment of broiler carcasses. J Food Protect, 63: 1087–1092.

    CAS  Google Scholar 

  105. Kennedy JE Jr, Oblinger JL, Bitton B (1984) Recovery of coliphages from chicken, pork sausage and delicatessen meats. J Food Protect, 47: 623–626.

    Google Scholar 

  106. Kereluk K, Gammon HA, Lloyd RS (1970) Microbiological aspects of ethylene oxide sterilization. II. Microbial resistance to ethylene oxide. Appl Microbiol, 19: 152–156.

    CAS  Google Scholar 

  107. Kim KW, Thomas RL, Lee C, Park HJ (2003) Antimicrobial activity of native chitosan, degraded chitosan, and o-carboxymethylated chitosan. J Food Protect, 66: 1495–1498.

    CAS  Google Scholar 

  108. Kim JG, Yousef AE (2000) Inactivation kinetics of foodborne spoilage and pathogenic bacteria by ozone. J Food Sci, 65: 521–528.

    CAS  Google Scholar 

  109. Kim JG, Yousef AE, Dave SA (1999) Application of ozone for enhancing the microbiological safety and quality of foods: A review. J Food Protect, 62: 1071–1087.

    CAS  Google Scholar 

  110. Klis JB, Witter LD, Ordal ZJ (1964) The effect of several antifungal antibiotics on the growth of common food spoilage fungi. Food Technol, 13: 124–128.

    Google Scholar 

  111. Kniel KE, Sumner SS, Lindsay DS, Hackney CR, Pierson MD, Zajac AM, Golden DA, Fayer D (2003) Effect of organic acids and hydrogen peroxide on Cryptosporidium parvum viability in fruit juices. J Food Protect, 66: 1650–1657.

    CAS  Google Scholar 

  112. Kueper TV, Trelease RD (1974) Variables affecting botulinum toxin development and nitrosamine formation in fermented sausages. In: Proceedings of the Meat Industry Research Conference. American Meat Institute Foundation, Chicago, pp. 69–74.

    Google Scholar 

  113. Labbe RG, Kinsley M, Wu J (2001) Limitations in the use of ozone to disinfect maple sap. J Food Protect, 64: 104–107.

    CAS  Google Scholar 

  114. Lana RP, Russell JB (1997) Effect of forage quality and monensin on the ruminal fermentation of fistulated cows fed continuously at a constant intake. J Anim Sci, 75: 224–229.

    CAS  Google Scholar 

  115. Leistner L, Gould G (2002) Hurdle Technologies — Combination Treatments for Food Stability, Safety and Quality. Kluwer Academic Publishers, New York.

    Google Scholar 

  116. LeMarrec C, Hyronimus B, Bressollier P, Verneuil B, Urdaci MC (2000) Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4. Appl Environ Microbiol, 66: 5213–5220.

    CAS  Google Scholar 

  117. Lin CCS, Fung DYC (1983) Effect of BHA, BHT, TBHQ, and PG on growth and toxigenesis of selected aspergilli. J Food Sci, 48: 576–580.

    CAS  Google Scholar 

  118. Lin CM, Moon SS, Doyle MP, McWatters KH (2002) Inactivation of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes on lettuce by hydrogen peroxide and lactic acid and by hydrogen peroxide with mild heat. J Food Protect, 65: 1215–1220.

    CAS  Google Scholar 

  119. Lin CM, Kim J, Du WX, Wei CI (2000) Bactericidal activity of isothiocyanate against pathogens on fresh produce. J Food Protect, 63: 25–30.

    CAS  Google Scholar 

  120. Lloyd AC (1975) Preservation of comminuted orange products. J Food Technol, 10: 565–567.

    CAS  Google Scholar 

  121. Loessner MJ, Maier SK, Schiwek P, Scherer S (1997) Long-chain polyphosphates inhibit growth of Clostridium tyrobutyricum in processed cheese spreads. J Food Protect, 60: 493–498.

    CAS  Google Scholar 

  122. Maier SK, Scherer S, Loessner MJ (1999) Long-chain polyphosphate causes cell lysis and inhibits Bacillus cereus septum formation, which is dependent on divalent cations. Appl Environ Microbiol, 65: 3942–3949.

    CAS  Google Scholar 

  123. McCann KB, Lee A, Wan J, Roginski H, Coventry MJ (2003) The effect of bovine lactoferrin and lactoferricin B on the ability of feline calicivirus (a norovirus surrogate) and poliovirus to infect cell cultures. J Appl Microbiol, 95: 1026–1033.

    CAS  Google Scholar 

  124. McDonnell G, Grignol G, Ankloga K (2002) Vapor phase hydrogen peroxide decontamination of food contact surfaces. Dairy Food Environ Sanit, 22: 868–873.

    Google Scholar 

  125. McEntire JC, Montville TJ, Chikindas ML (2003) Synergy between nisin and select lactates against Listeria monocytogenes is due to the metal cations. J Food Protect, 66: 1631–1636.

    CAS  Google Scholar 

  126. McMeekin TA, Presser K, Ratkowsky D et al. (2000) Quantifying the hurdle concept by modeling the bacterial growth/no growth interface. Int J Food Microbiol, 55: 93–98.

    CAS  Google Scholar 

  127. Melly E, Cowan AE, Setlow P (2002) Studies on the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide. J Appl Microbiol, 93: 316–325.

    CAS  Google Scholar 

  128. Meyer JD, Cerveny JG, Luchansky JB (2003) Inhibition of nonproteolytic, psychrotrophic clostridia and anaerobic sporeformers by sodium diacetate and sodium lactate in cook-in-bag turkey breast. J Food Protect, 66: 1474–1478.

    CAS  Google Scholar 

  129. Miller SA, Brown WD (1984) Effectiveness of chlortetracycline in combination with potassium sorbate or tetrasodium ethylene-diaminetetraacetate for preservation of vacuum packed rockfish fillets. J Food Sci, 49: 188–191.

    CAS  Google Scholar 

  130. Miller ML, Martin ED (1990) Fate of Salmonella Enteritidis and Salmonella Typhimurium into an Italian salad dressing with added eggs. Dairy Food Environ Sanit, 10(1): 12–14.

    Google Scholar 

  131. Ming X, Daeschel MA (1995) Correlation of cellular phospholipid content with nisin resistance of Listeria monocytogenes Scott A. J Food Protect, 58: 416–420.

    CAS  Google Scholar 

  132. Morita H, Sakata R, Nagata Y (1998) Nitric oxide complex of iron (II) myoglobin converted from metmyoglobin by Staphylococcus xylosus. J Food Sci, 63: 352–355.

    CAS  Google Scholar 

  133. Morris JA, Khettry A, Seitz EW (1979) Antimicrobial activity of aroma chemicals and essential oils. J Am Oil Chem Soc, 56: 595–603.

    CAS  Google Scholar 

  134. Muthukumarasamy PJ, Han H, Holley RA (2003) Bactericidal effects of Lactobacillus reuteri and allyl isohiocyanate on Escherichia coli O157:H7 in refrigerated ground beef. J Food Protect, 66: 2038–2044.

    CAS  Google Scholar 

  135. Naidu AS (2002) Activated lactoferrin-A new approach to meat safety. Food Technol, 56(3): 40–45.

    CAS  Google Scholar 

  136. Naidu AS (2000) Microbial blocking agents: Anew approach to meat safety. Food Technol, 54(2): 112.

    Google Scholar 

  137. Nascimento HS, Silva N, Catanozi MPLM, Silva KC (2003) Effects of different disinfection treatments on the natural microbiota of lettuce. J Food Protect, 66: 1697–1700.

    CAS  Google Scholar 

  138. Nilsson L, Chen V, Chikindas ML, Huss HH, Gram L, Montville TJ (2000) Carbon dioxide and nisin act synergistically on Listeria monocytogenes. Appl Microbiol Environ, 66: 769–774.

    CAS  Google Scholar 

  139. Nilsson L, Gram L, Huss HH (1999) Growth control of Listeria monocytogenes on cold-smoked salmon using a competitive lactic acid bacteria flora. J Food Protect, 62: 336–342.

    CAS  Google Scholar 

  140. Niroomand F, Sperber WH, Lewandowski VJ, Hobbs LJ (1998) Fate of bacterial pathogens and indicator organisms in liquid sweeteners. J Food Protect, 61: 295–299.

    CAS  Google Scholar 

  141. No HK, Park NY, Lee SH, Hwang HJ, Meyers SP (2002) Antibacterial activities of chitosans and chitosan oligomers with different molecular weights on spoilage bacteria isolated from tofu. J Food Sci, 67: 1511–1514.

    CAS  Google Scholar 

  142. Nordin HR (1969) The depletion of added sodium nitrite in ham. Can Inst Food Sci Technol J, 2: 79–85.

    CAS  Google Scholar 

  143. O’Boyle AR, Rubin LJ, Diosady LL, Aladin-Kassam N, Comer F, Brightwell W (1990) A nitritefree curing system and its application to the production of wieners. Food Technol, 44(5): 88, 90–91, 93, 95–96, 98, 100, 102–104.

    Google Scholar 

  144. O’Leary V, Solberg M (1976) Effect of sodium nitrite inhibition on intracellular thiol groups and on the activity of certain glycolytic enzymes in Clostridium perfringens. Appl Environ Microbiol, 31: 208–212.

    CAS  Google Scholar 

  145. Ough CS (1983) Sulfur dioxide and sulfites. In: Branen AL, Davidson PM (eds) Antimicrobials in Foods. Marcel Dekker, New York, pp. 177–203.

    Google Scholar 

  146. Paquette MW, Robach MC, Sofos JN, Busta F (1980) Effects of various concentrations of sodium nitrite and potassium sorbate on color and sensory qualities of commercially prepared bacon. J Food Sci, 45: 1293–1296.

    CAS  Google Scholar 

  147. Park CM, Beuchat LR (1999) Evaluation of sanitizers for killing Escherichia coli O157:H7, Salmonella, and naturally occurring microorganisms on cantaloupes, honeydewmelons, and asparagus. Dairy Food Environ Sanit, 19: 842–847.

    Google Scholar 

  148. Perigo JA, Roberts TA (1968) Inhibition of clostridia by nitrite. J Food Technol, 3: 91–94.

    Google Scholar 

  149. Perigo JA, Whiting E, Bashford TE (1967) Observations on the inhibition of vegetative cells of Clostridium sporogenes by nitrite which has been autoclaved in a laboratory medium, discussed in the context of sublethally processed meats. J Food Technol, 2: 377–397.

    CAS  Google Scholar 

  150. Peterson AC, Black JJ, Gunderson MF (1962) Staphylococci in competition. I. Growth of naturally occurring mixed populations in precooked frozen foods during defrost. Appl Microbiol, 10: 16–22.

    CAS  Google Scholar 

  151. Pierson MD, Reddy NR (1982) Inhibition of Clostridium botulinum by antioxidants and related phenolic compounds in comminuted pork. J Food Sci, 47: 1926–1929, 1935.

    CAS  Google Scholar 

  152. Pitt WM, Harden TJ, Hull RR (2000) Behavior of Listeria monocytogenes in pasteurized milk during fermentation with lactic acid bacteria. J Food Protect, 63: 916–920.

    CAS  Google Scholar 

  153. Porto ACS, Franco BDGM, Sant’Anna ES, Call JK, Piva A, Luchansky JB (2002) Viability of a five-strain mixture of Listeria monocytogenes in vacuum-sealed packages of frankfurters, commercially prepared with and without 2.0 or 3.0% added potassium lactate, during extended storage at 4 and 10 °C. J Food Protect, 65: 308–315.

    CAS  Google Scholar 

  154. Raccach M, Baker RC (1978) Lactic acid bacteria as an antispoilage and safety factor in cooked, mechanically deboned poultry meat. J Food Protect, 41: 703–705.

    Google Scholar 

  155. Rayman K, Malik N, Hurst A (1983) Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system. Appl Environ Microbiol, 46: 1450–1452.

    CAS  Google Scholar 

  156. Reddy D, Lancaster JR Jr, Cornforth DP (1983) Nitrite inhibition of Clostridium botulinum: Electron spin resonance detection of iron-nitric oxide complexes. Science, 221: 769–770.

    CAS  Google Scholar 

  157. Robach MC, Pierson MD (1979) Inhibition of Clostridium botulinum types A and B by phenolic antioxidants. J Food Protect, 42: 858–861.

    CAS  Google Scholar 

  158. Robach MC, Pierson MD (1978) Influence of para-hydroxybenzoic acid esters on the growth and toxin production of Clostridium botulinum 10755A. J Food Sci, 43: 787–789, 792.

    CAS  Google Scholar 

  159. Roberts TA, Gibson AM, Robinson A (1981) Factors controlling the growth of Clostridium botulinum types A and B in pasteurized, cured meats. II. Growth in pork slurries prepared from “high” pH meat (range 6.3–6.8). J Food Technol, 16: 267–281.

    CAS  Google Scholar 

  160. Roberts TA, Gibson AM, Robinson A (1982) Factors controlling the growth of Clostridium botulinum types A and B in pasteurized, cured meats. III. The effect of potassium sorbate. J Food Technol, 17: 307–326.

    CAS  Google Scholar 

  161. Roberts TA, Ingram M (1966) The effect of sodium chloride, potassium nitrate and sodium nitrite on the recovery of heated bacterial spores. J Food Technol, 1: 147–163.

    Google Scholar 

  162. Roberts TA, Smart JL (1974) Inhibition of spores of Clostridium spp. by sodium nitrite. J Appl Bacteriol, 37: 261–264.

    CAS  Google Scholar 

  163. Ronning IE, Frank HA (1988) Growth response of putrefactive anaerobe 3679 to combinations of potassium sorbate and some common curing ingredients (sucrose, salt, and nitrite), and to noninhibitory levels of sorbic acid. J Food Protect, 51: 651–654.

    CAS  Google Scholar 

  164. Ronning IE, Frank HA (1987) Growth inhibition of putrefactive anaerobe 3679 caused by stringenttype response induced by protonophoric activity of sorbic acid. Appl Environ Microbiol, 53: 1020–1027.

    CAS  Google Scholar 

  165. Rose NL, Palcic MM, Sporns P, McMullen LM (2002) Nisin: A novel substrate for glutathione S-transferase isolated from fresh beef. J Food Sci, 67: 2288–2293.

    CAS  Google Scholar 

  166. Sabah JR, Thippareddi H, Marsden JL, Fung DYC (2003) Use of organic acids for the control of Clostridium perfringens in cooked vacuum-packaged restructured roast beef during an alternative cooling procedure. J Food Protect, 66: 1408–1412.

    CAS  Google Scholar 

  167. Sahl HG, Kordel M, Benz R (1987) Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch Microbiol, 149: 120–124.

    CAS  Google Scholar 

  168. Savage RA, Stumbo CR (1971) Characteristics of progeny of ethylene oxide treated Clostridium botulinum type 62A spores. J Food Sci, 36: 182–184.

    CAS  Google Scholar 

  169. Sapers GM, Sites JE (2003) Efficacy of 1% hydrogen peroxide wash in decontaminating apples and cantaloupe melons. J Food Sci, 68: 1793–1797.

    CAS  Google Scholar 

  170. Sapers GM, Miller RL, Jantschke M, Mattrazzo AM (2000) Factors limiting the efficacy of hydrogen peroxide washes for decontamination of apples containing Escherichia coli. J Food Sci, 65: 529–532.

    CAS  Google Scholar 

  171. Schillinger U, Geisen R, Holzapfel WH (1996) Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci Technol, 7: 158–164.

    CAS  Google Scholar 

  172. Schuenzel KM, Harrison MA (2002) Microbial antagonists of foodborne pathogens on fresh, minimally processed vegetables. J Food Protect, 65: 1909–1915.

    Google Scholar 

  173. Scott VN, Taylor SL (1981) Effect of nisin on the outgrowth of Clostridium botulinum spores. J Food Sci, 46: 117–120, 126.

    CAS  Google Scholar 

  174. Senne MM, Gilliland SE (2003) Antagonistic action of cells of Lactobacillus delbrueckii subsp. lactis against pathogenic and spoilage microorganisms in fresh meat systems. J Food Protect, 66: 418–425.

    CAS  Google Scholar 

  175. Setlow B, Loshon CA, Genest PC, Cowan AW, Setlow C, Setlow P (2002) Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol. J Appl Microbiol, 92: 362–375.

    CAS  Google Scholar 

  176. Seward RA, Deibel RH, Lindsay RC (1982) Effects of potassium sorbate and other antibotulinal agents on germination and outgrowth of Clostridium botulinum type E spores in microcultures. Appl Environ Microbiol, 44: 1212–1221.

    CAS  Google Scholar 

  177. Shahidi F, Rubin LJ, Diosady LL, Chew V, Wood DF (1984) Preparation of dinitrosyl ferrohemochrome from hemin and sodium nitrite. Can Inst Food Sci Technol J, 17: 33–37.

    CAS  Google Scholar 

  178. Shelef LA (1994) Antimicrobial effects of lactates: A review. J Food Protect, 57: 445–450.

    CAS  Google Scholar 

  179. Shelef LA, Seiter JA (1993) Indirect antimicrobials. In: Davidson PM (ed) Antimicrobials in Foods (2nd ed). Marcel Dekker, New York, pp. 539–569.

    Google Scholar 

  180. Shelef LA (1983) Antimicrobial effects of spices. J Food Safety, 6: 29–44.

    Google Scholar 

  181. Shelef LA, Liang P (1982) Antibacterial effects of butylated hydroxyanisole (BHA) against Bacillus species. J Food Sci, 47: 796–799.

    CAS  Google Scholar 

  182. Shelef LA, Naglik OA, Bogen DW (1980) Sensitivity of some common food-borne bacteria to the spices sage, rosemary, and allspice. J Food Sci, 45: 1042–1044.

    Google Scholar 

  183. Sofos JN (1989) Sorbate Food Preservatives. CRC Press, Boca Raton, FL.

    Google Scholar 

  184. Sofos JN, Busta FF, Allen CE (1980) Influence of pH on Clostridium botulinum control by sodium nitrite and sorbic acid in chicken emulsions. J Food Sci, 45: 7–12.

    CAS  Google Scholar 

  185. Sofos JN, Busta FF, Bhothipaksa K, Allen CE, Robach MC, Paquette MW (1980) Effects of various concentrations of sodium nitrite and potassium sorbate on Clostridium botulinum toxin production in commercially prepared bacon. J Food Sci, 45: 1285–1292.

    CAS  Google Scholar 

  186. Splittstoesser DF, Wilkison M (1973) Some factors affecting the activity of diethylpyrocarbonate as a sterilant. Appl Microbiol, 25: 853–857.

    CAS  Google Scholar 

  187. Swartling P, Lindgren B (1968) The sterilizing effect against Bacillus subtilis spores of hydrogen peroxide at different temperatures and concentrations. J Dairy Res, 35: 423–428.

    Google Scholar 

  188. Tanaka N, Gordon NM, Lindsay RC, Meske LM, Doyle MP, Traisman E (1985) Sensory characteristics of reduced nitrite bacon manufactured by the Wisconsin process. J Food Protect, 48: 687–692.

    Google Scholar 

  189. Tanaka N, Meske L, Doyle MP, Traisman E, Thayer DW, Johnston RW (1985) Plant trials of bacon made with lactic acid bacteria, sucrose and lowered sodium nitrite. J Food Protect, 48: 679–686.

    CAS  Google Scholar 

  190. Tanaka N, Traisman E, Lee MH, Cassens RG, Foster EM (1980) Inhibition of botulinum toxin formation in bacon by acid development. J Food Protect, 43: 450–457.

    CAS  Google Scholar 

  191. Tarr HLA, Southcott BA, Bissett HM (1952) Experimental preservation of flesh foods with antibiotics. Food Technol, 6: 363–368.

    Google Scholar 

  192. Thompson DP, Metevia L, Vessel T (1993) Influence of pH alone and in combination with phenolic antioxidants on growth and germination of mycotoxigenic species of Fusarium and Penicillium. J Food Protect, 56: 134–138.

    CAS  Google Scholar 

  193. Toledo RT (1975) Chemical sterilants for aseptic packaging. Food Technol, 29(5): 102–107.

    CAS  Google Scholar 

  194. Toledo RT, Escher FE, Ayres JC (1973) Sporicidal properties of hydrogen peroxide against food spoilage organisms. Appl Microbiol, 26: 592–597.

    CAS  Google Scholar 

  195. Tompkin RB (1983) Nitrite. In: Branen AL, Davidson PM (eds) Antimicrobials in Foods. Marcel Dekker, New York, pp. 205–206.

    Google Scholar 

  196. Tompkin RB, Christiansen LN, Shaparis AB (1978) Enhancing nitrite inhibition of Clostridium botulinum with isoascorbate in perishable canned cured meat. Appl Environ Microbiol, 35: 59–61.

    CAS  Google Scholar 

  197. Tompkin RB, Christiansen LN, Shaparis AB (1978) Causes of variation in botulinal inhibition in perishable canned cured meat. Appl Environ Microbiol, 35:886–889.

    CAS  Google Scholar 

  198. Tompkin RB, Christiansen LN, Shaparis AB (1979) Iron and the antibotulinal efficacy of nitrite. Appl Environ Microbiol, 37: 351–353.

    CAS  Google Scholar 

  199. Tompkin RB, Christiansen LN, Shaparis AB (1980) Antibotulinal efficacy of sulfur dioxide in meat. Appl Environ Microbiol, 39: 1096–1099.

    CAS  Google Scholar 

  200. Torriani S, Orsi C, Vescova M (1997) Potential of Lactobacillus casei culture permeate, and lactic acid to control microorganisms in ready-to-use vegetables. J Food Protect, 60: 1564–1567.

    CAS  Google Scholar 

  201. Ukuku DO, Sapers GM (2001) Effect of sanitizer treatments on Salmonella Stanley attached to the surface of cantaloupe and cell transfer to fresh-cut tissues during cutting practices. J Food Protect, 64: 1286–1292.

    CAS  Google Scholar 

  202. Vareltzis K, Buck EM, Labbe RG (1984) Effectiveness of a betalains/potassium sorbate system versus sodium nitrite for color development and control of total aerobes, Clostridium perfringens and Clostridium sporogenes in chicken frankfurters. J Food Protect, 47: 532–536.

    CAS  Google Scholar 

  203. Vas K, Ingram M (1949) Preservation of fruit juices with less SO2. Food Manuf, 24: 414–416.

    CAS  Google Scholar 

  204. Venkitanarayanan KS, Ezeike GO, Hung YC, Doyle MP (1999) Efficacy of electrolyzed oxiding water for inactivating Escherichia coli 0157:H7, Salmonella Enteritidis, and Listeria monocytogenes. Appl Environ Microbiol, 65: 4276–4279.

    CAS  Google Scholar 

  205. Wagner MK, Busta FF (1983) Effect of sodium acid pyrophosphate in combination with sodium nitrite or sodium nitrite/potassium sorbate on Clostridium botulinum growth and toxin production in beef/pork frankfurter emulsions. J Food Sci, 48: 990–991, 993.

    Google Scholar 

  206. Wang IN, Smith DL, Young R (2000) Holins: The protein clocks of bacteriophage infections. Ann Rev Microbiol, 54: 799–825.

    CAS  Google Scholar 

  207. Weissinger WR, Watters KH, Beuchat LR (2001) Evaluation of volatile chemical treatments for lethality to Salmonella on alfalfa seeds and sprouts. J Food Protect, 64: 442–450.

    CAS  Google Scholar 

  208. Weissinger WR, Beuchat LR (2000) Comparison of aqueous chemical treatments to eliminate Salmonella on alfalfa seeds. J Food Protect, 63: 1475–1482.

    CAS  Google Scholar 

  209. Wickramanayake GB, Rubin AJ, Sproul OJ (1984) Inactivation of Giardia lamblia Cysts with Ozone. Appl Environ Microbiol, 48:671–672.

    CAS  Google Scholar 

  210. Winarno FG, Stumbo CR (1971) Mode of action of ethylene oxide on spores of Clostridium botulinum 62A. J Food Sci, 36: 892–895.

    CAS  Google Scholar 

  211. Wisniewsky MA, Glatz BA, Gleason ML, Reitmeier CA (2000) Reduction of Escherichia coli O157:H7 counts on whole fresh apples by treatment with sanitizers. J Food Protect, 63: 703–708.

    CAS  Google Scholar 

  212. Wood DS, Collins-Thompson DL, Usborne WR, Pickard B (1986) An evaluation of antibotulinal activity in nitrite-free curing systems containing dinitrosyl ferrohemochrome. J Food Protect, 49: 691–695.

    CAS  Google Scholar 

  213. Woods LFJ, Wood JM (1982) A note on the effect of nitrite inhibition on the metabolism of Clostridium botulinum. J Appl Bacteriol, 52: 109–110.

    CAS  Google Scholar 

  214. Woods LFJ, Wood JM, Gibbs PA (1981) The involvement of nitric oxide in the inhibition of the phosphoroclastic system in Clostridium sporogenes by sodium nitrite. J Gen Microbiol, 125: 399–406.

    CAS  Google Scholar 

  215. Wu FM, Doyle MP, Beuchat LR, Wells JG, Mintz ED, Swaminathan B (2000) Fate of Shigella sonnei on parsley and methods of disinfection. J Food Protect, 63: 568–572.

    CAS  Google Scholar 

  216. Xu L (1999) Use of ozone to improve the safety of fresh fruits and vegetables. Food Technol, 53(10): 58–61, 63.

    CAS  Google Scholar 

  217. Yamazaki K, Suzuki M, Kawai Y, Inoue N, Montville TJ (2003) Inhibition of Listeria monocytogenes in coldsmoked salmon by Carnobacterium piscicola CS526 isolated from frozen surimi. J Food Protect, 66: 1420–1425.

    Google Scholar 

  218. Yang H, Svem BL, Li Y (2003) The effect of pH on inactivation of pathogenic bacteria on freshcut lettuce by dipping treatment with electrolyzed water. J Food Sci, 68: 1013–1017.

    CAS  Google Scholar 

  219. Yarbrough JM, Rake JB, Egon RG (1980) Bacterial inhibitory effects of nitrite: Inhibition of active transport, but not of group translocation, and of intracellular enzymes. Appl Environ Microbiol, 39: 831–834.

    CAS  Google Scholar 

  220. Young R, Bläsi U (1995) Holins: Form and function in bacteriophage lysis. FEMS Microbiol Rev, 17: 191–205.

    CAS  Google Scholar 

  221. Young SB, Setlow P (2003) Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide. J Appl Microbiol, 95: 54–67.

    CAS  Google Scholar 

  222. Yun J, Shahidi F, Rubin LJ, Diosady LL (1987) Oxidative stability and flavour acceptability of nitrite-free curing systems. Can Inst Food Sci Technol J, 20: 246–251.

    CAS  Google Scholar 

  223. Zaika LL, Kissinger JC, Wasserman AE (1983) Inhibition of lactic acid bacteria by herbs. J Food Sci, 48: 1455–1459.

    Google Scholar 

  224. Zaika LL, Scullen OJ, Fanelli JS (1997) Growth inhibition of Listeria monocytogenes by sodium polyphosphate as affected by polyvalent metal ions. J Food Sci, 62: 867–869, 872.

    CAS  Google Scholar 

  225. Zessin KG, Shelef LA (1988) Sensitivity of Pseudomonas strains to polyphosphates in media systems. J Food Sci, 53: 669–670.

    CAS  Google Scholar 

  226. Zimmer M, Vukov N, Scherer S, Loessner MJ (2002) The murein hydrolase of the bacteriophage o3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol, 68: 5311–5317.

    CAS  Google Scholar 

  227. Zivanovic S, Basurto CC, Chi S, Davidson PM, Weiss J (2004) Molecular weight of chitosan influences — antimicrobial activity in oil-in-water emulsions. J Food Protect, 67: 952–959.

    CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

(2009). Protezione degli alimenti mediante sostanze chimiche e sistemi di biocontrollo. In: Pulvirenti, A. (eds) Microbiologia degli alimenti. Food. Springer, Milano. https://doi.org/10.1007/978-88-470-0786-4_13

Download citation

Publish with us

Policies and ethics