Skip to main content

Tecniche di coltura, di microscopia e di campionamento

  • Chapter
Microbiologia degli alimenti

Part of the book series: Food ((FOOD))

  • 1045 Accesses

Estratto

L’analisi degli alimenti condotta per determinare presenza, tipologia e numero dei microrganismi e/o dei loro metaboliti è di fondamentale importanza per la microbiologia degli alimenti. Ciò nonostante, nessuna delle metodiche di uso comune consente di determinare con esattezza il numero di microrganismi presenti in un prodotto alimentare. Sebbene alcuni metodi di analisi siano migliori di altri, tutti presentano limitazioni intrinseche associate al loro impiego.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Alcock SJ, Hall LP, Blanchard JH (1987) Methylene blue test to assess the microbial contamination of frozen peas. Food Microbiol, 4: 3–10.

    Article  Google Scholar 

  2. Allwood MC, Russell AD (1967) Mechanism of thermal injury in Staphylococcus aureus. I. Relationship between viability and leakage. Appl Microbiol, 15: 1266–1269.

    CAS  Google Scholar 

  3. Anderson KL, Fung DYC (1983) Anaerobic methods, techniques and principles for food bacteriology: A review. J Food Protect, 46: 811–822.

    Google Scholar 

  4. Andrew MHE, Russell AD (1984) The Revival of Injured Microbes. Academic Press, London.

    Google Scholar 

  5. Andrews WH, Wilson CR, Poelma PL, Romero A, Rude RA, Duran AP, McClure FD, Gentile DE (1978) Usefulness of the Stomacher in a microbiological regulatory laboratory. Appl Environ Microbiol, 35: 89–93.

    CAS  Google Scholar 

  6. Angelotti R, Foter MJ (1958) A direct surface agar plate laboratory method for quantitatively detecting bacterial contamination on nonporous surfaces. Food Res, 23: 170–174.

    Google Scholar 

  7. Angelotti R, Wilson JL, Litsky W, Walter WG (1964) Comparative evaluation of the cotton swab and rodac methods for the recovery of Bacillus subtilis spore contamination from stainless steel surfaces. Health Lab Sci, 1: 289–296.

    CAS  Google Scholar 

  8. Association of Official Analytical Chemists (1983) Enumeration of coliforms in selected foods. Hydrophobic grid membrane filter method, official first action. J Assoc Off Anal Chem, 66: 547–548.

    Google Scholar 

  9. Austin BL, Thomas B (1972) Dye reduction tests on meat products. J Sci Food Agric, 23: 542.

    Article  CAS  Google Scholar 

  10. Barach JT, Flowers RS, Adams DM (1975) Repair of heat-injured Clostridium perfringens spores during outgrowth. Appl Microbiol, 30: 873–875.

    CAS  Google Scholar 

  11. Betts RP, Bankes P, Board JG (1989) Rapid enumeration of viable micro-organisms by staining and direct microscopy. Lett Appl Microbiol, 9: 199–202.

    Article  Google Scholar 

  12. Beuchat LR (ed) (1987) Food and Beverage Mycology (2nd ed). Kluwer Academic Publishers, New York.

    Google Scholar 

  13. Beuchat LR, Lechowich RV (1968) Effect of salt concentration in the recovery medium on heatinjured Streptococcus faecalis. Appl Microbiol, 16: 772–776.

    CAS  Google Scholar 

  14. Brewer DG, Martin SE, Ordal ZJ (1977) Beneficial effects of catalase or pyruvate in a most-probablenumber technique for the detection of Staphylococcus aureus. Appl Environ Microbiol, 34: 797–800.

    CAS  Google Scholar 

  15. Brodsky MH, Entis P, Sharpe AN, Jarvis GA (1982) Enumeration of indicator organisms in foods using the automated hydrophobic grid membrane filter technique. J Food Protect, 45: 292–296.

    Google Scholar 

  16. Beuchat LR, Copeland F, Curiale MS, Danisavich D, Ganger V, King BW, Lawlis TL, Likin RO, Owkusoa J, Smith CE, Townsend DE (1998) Comparison of SimPlate total plate count method with Petrifilm, Redigel, and conventional pour-plate methods for enumerating aerobic microorganisms in foods. J Food Protect, 61: 14–18.

    CAS  Google Scholar 

  17. Brodsky MH, Entis P, Entis MP, Sharpe AN, Jarvis GA (1982) Determination of aerobic plate and yeast and mold counts in foods using an automated hydrophobic grid membrane filter technique. J Food Protect, 45: 301–304.

    Google Scholar 

  18. Bogosian G, Morris PJL, O’Neil JP (1998) A mixed culture recovery method indicates that enteric bacteria do not enter the viable but nonculturable state. Appl Environ Microbiol, 64: 1736–1742.

    CAS  Google Scholar 

  19. Brodsky MH, Boleszczuk P, Entis P (1982) Effect of stress and resuscitation on recovery of indicator bacteria from foods using hydrophobic grid-membrane filtration. J Food Protect, 45: 1326–1331.

    Google Scholar 

  20. Busta FF (1976) Practical implications of injured microorganisms in food. J Milk Food Technol, 39: 138–145.

    Google Scholar 

  21. Chain VS, Fung DYC (1991) Comparison of Redigel, Petrifilm, Spiral plate system, Isogrid, and aerobic plate count for determining the numbers of aerobic bacteria in selected foods. J Food Protect, 54: 208–211.

    Google Scholar 

  22. Clark DS (1965) Method of estimating the bacterial population of surfaces. Can J Microbiol, 11: 407–413.

    CAS  Google Scholar 

  23. Clark DS (1965) Improvement of spray gun method of estimating bacterial populations on surfaces. Can J Microbiol, 11: 1021–1022.

    CAS  Google Scholar 

  24. Conner DE, Beuchat LR (1984) Sensitivity of heat-stressed yeasts to essential oils of plants. Appl Environ Microbiol, 47: 229–233.

    CAS  Google Scholar 

  25. Cordray JC, Huffman DL (1985) Comparison of three methods for estimating surface bacteria on pork carcasses. J Food Protect, 48: 582–584.

    Google Scholar 

  26. Cormier A, Chiasson S, Léger A (1993) Comparison of maceration and enumeration procedures for aerobic count in selected seafoods by standard method, Petrifilm, Redigel, and Isogrid. J Food Protect, 56: 249–255.

    Google Scholar 

  27. Cousin MA (1982) Evaluation of a test strip used to monitor food processing sanitation. J Food Protect, 45: 615–619, 623.

    Google Scholar 

  28. de Figueiredo MP, Jay JM (1976) Coliforms, enterococci, and other microbial indicators. In: de Figueiredo MP, Splittstoesser DF (eds) Food Microbiology: Public Health and Spoilage Aspects. Kluwer Academic Publishers, NewYork, pp. 271–297.

    Google Scholar 

  29. Dodsworth PJ, Kempton AG (1977) Rapid measurement of meat quality by resazurin reduction. II. Industrial application. Can Inst Food Sci Technol J, 10: 158–160.

    Google Scholar 

  30. Donnelly CB, Gilchrist JE, Peeler JT, Campbell JE (1976) Spiral plate count method for the examination of raw and pasteurized milk. Appl Environ Microbiol, 32: 21–27.

    CAS  Google Scholar 

  31. Downes FP, Ito K (eds) (2001) Compendium of Methods for the Microbiological Examination of Foods. American Public Health Association, Washington, DC.

    Google Scholar 

  32. Entis P (1985) Rapid hydrophobic grid membrane filter method for Salmonella detection in selected foods. J Assoc Off Anal Chem, 68: 555–564.

    Google Scholar 

  33. Entis P (1983) Enumeration of coliforms in non-fat dry milk and canned custard by hydrophobic grid membrane filter method: Collaborative study. J Assoc Off Anal Chem, 66: 897–904.

    CAS  Google Scholar 

  34. Entis P, Lerner I (1998) Enumeration of β-glucuronidase-positive Escherichia coli in foods by using the ISO-GRID method with SD-39 agar. J Food Protect, 61: 913–916.

    CAS  Google Scholar 

  35. Favero MS, McDade JJ, Robertsen JA, Hoffman RK, Edwards RW (1968) Microbiological sampling of surfaces. J Appl Bacteriol, 31: 336–343.

    CAS  Google Scholar 

  36. FDA (1995) Bacteriological Analytical Manual (8th ed) Association of Official Analytical Chemists Int, McLean, VA.

    Google Scholar 

  37. Flowers RS, Martin SE, Brewer DG, Ordal ZJ (1977) Catalase and enumeration of stressed Staphylococcus aureus cells. Appl Environ Microbiol, 33: 1112–1117.

    CAS  Google Scholar 

  38. Foegeding PM, Busta FF (1981) Bacterial spore injury — An update. J Food Protect, 44: 776–786.

    CAS  Google Scholar 

  39. Foegeding PM, Busta FF (1983) Proposed role of lactate in germination of hypochlorite-treated Clostridium botulinum spores. Appl Environ Microbiol, 45: 1369–1373.

    CAS  Google Scholar 

  40. Foegeding PM, Busta FF (1983) Proposed mechanism for sensitization by hypochlorite treatment of Clostridium botulinum spores. Appl Environ Microbiol, 45: 1374–1379.

    CAS  Google Scholar 

  41. Fung DYC, Lee CY, Kastner CL (1980) Adhesive tape method for estimating microbial load on meat surfaces. J Food Protect, 43: 295–297.

    Google Scholar 

  42. Fung DY, VandenBosch LL (1975) Repair, growth, and enterotoxigenesis of Staphylococcus aureus S-6 injured by freeze-drying. J Milk Food Technol, 38: 212–218.

    Google Scholar 

  43. Garvie EI, Rowlands A (1952) The role of micro-organisms in dye-reduction and keeping-quality tests. II. The effect of micro-organisms when added to milk in pure and mixed culture. J Dairy Res, 19: 263–274.

    Article  Google Scholar 

  44. Gilchrist JE, Campbell JE, Donnelly CB, Peeler JT, Delany JM (1973) Spiral plate method for bacterial determination. Appl Microbiol, 25: 244–252.

    CAS  Google Scholar 

  45. Ginn RE, Packard VS, Fox TL (1984) Evaluation of the 3M dry medium culture plate (Petrifilm SM) method for determining numbers of bacteria in raw milk. J Food Protect, 47: 753–755.

    Google Scholar 

  46. Gunderson MF, Rose KD (1948) Survival of bacteria in a precooked, fresh-frozen food. Food Res, 13: 254–263.

    CAS  Google Scholar 

  47. Harries D, Russell AD (1966) Revival of heat-damaged Escherichia coli. Experientia, 22: 803–804.

    Article  CAS  Google Scholar 

  48. Harris ND (1963) The influence of the recovery medium and the incubation temperature on the survival of damaged bacteria. J Appl Bacteriol, 26: 387–397.

    Google Scholar 

  49. Hartman PA, Hartman PS, Lanz WW (1975) Violet red bile 2 agar for stressed coliforms. Appl Microbiol, 29: 537–539.

    CAS  Google Scholar 

  50. Hartsell SE (1951) The longevity and behavior of pathogenic bacteria in frozen foods: The influence of plating media. Am J Public Health, 41: 1072–1077.

    Article  CAS  Google Scholar 

  51. Hedges AJ, Shannon R, Hobbs RP (1978) Comparison of the precision obtained in counting viable bacteria by the spiral plate maker, the droplette and the Miles and Misra methods. J Appl Bacteriol, 45: 57–65.

    CAS  Google Scholar 

  52. Hobbie JE, Daley RJ, Jasper S (1977) Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol, 33: 1225–1228.

    CAS  Google Scholar 

  53. Holah JT, Betts RP, Thorpe RH (1988) The use of direct epifluorescent microscopy (DEM) and the direct epifluorescent filter technique (DEFT) to assess microbial populations on food contact surfaces. J Appl Bacteriol, 65: 215–221.

    CAS  Google Scholar 

  54. Holley RA, Smith SM, Kempton AG (1977) Rapid measurement of meat quality by resazurin reduction. I. Factors affecting test validity. Can Inst Food Sci Technol J, 10: 153–157.

    Google Scholar 

  55. Hurst A (1977) Bacterial injury: A review. Can J Microbiol, 23: 935–944.

    CAS  Google Scholar 

  56. Hurst A, Hendry GS, Hughes A, Paley B (1976) Enumeration of sublethally heated staphylococci in some dried foods. Can J Microbiol, 22: 677–683.

    CAS  Google Scholar 

  57. Hurst A, Hughes A (1978) Stability of ribosomes of Staphylococcus aureus S-6 sublethally heated in different buffers. J Bacteriol, 133: 564–568.

    CAS  Google Scholar 

  58. Hurst A, Hughes A, Beare-Rogers JL, Collins-Thompson DL (1973) Physiological studies on the recovery of salt tolerance by Staphylococcus aureus after sublethal heating. J Bacteriol, 116: 901–907.

    CAS  Google Scholar 

  59. Hurst A, Hughes A, Collins-Thompson DL, Shah BG (1974) Relationship between loss of magnesium and loss of salt tolerance after sublethal heating of Staphylococcus aureus. Can J Microbiol, 20: 1153–1158.

    CAS  Google Scholar 

  60. Hutcheson TC, McKay T, Farr L, Seddon B (1988) Evaluation of the stain Viablue for the rapid estimation of viable yeast cells. Lett Appl Microbiol, 6: 85–88.

    Article  Google Scholar 

  61. Jackson RW, Osborne K, Barnes G, Jolliff C, Zamani D, Roll B, Stillings A, Herzog D, Cannon S, Loveland S (2000) Multiregional evaluation of the SimPlate heterotrophic plate count method compared to the standard plate count agar pour plate method in water. Appl Environ Microbiol, 66: 453–454.

    Article  CAS  Google Scholar 

  62. Jarvis B, Lach VH, Wood JM (1977) Evaluation of the spiral plate maker for the enumeration of micro-organisms in foods. J Appl Bacteriol, 43: 149–157.

    Google Scholar 

  63. Jay JM, Margitic S (1979) Comparison of homogenizing, shaking, and blending of the recovery of microorganisms and endotoxins from fresh and frozen ground beef as assessed by plate counts and the Limulus amoebocyte lysate test. Appl Environ Microbiol, 38: 879–884.

    CAS  Google Scholar 

  64. Jones SB, Palumbo SA, Smith JL (1983) Electron microscopy of heat-injured and repaired Staphylococcus aureus. J Food Safety, 5: 145–157.

    Article  CAS  Google Scholar 

  65. Juffs HS, Babel FJ (1975) Rapid enumeration of psychrotrophic bacteria in raw milk by the microscopic colony count. J Milk Food Technol, 38: 333–336.

    Google Scholar 

  66. Knabel SJ, Walker HW, Kraft AA (1987) Enumeration of fluorescent pseudomonads on poultry by using the hydrophobic-grid membrane filter method. J Food Sci, 52: 837–841, 845.

    Article  Google Scholar 

  67. Koch HA, Bandler R, Gibson RR (1986) Fluorescence microscopy procedure for quantification of yeasts in beverages. Appl Environ Microbiol, 52: 599–601.

    CAS  Google Scholar 

  68. Koller W (1984) Recovery of test bacteria from surfaces with a simple new swab-rinse technique: A contribution to methods for evaluation of surface disinfectants. Zent Bakteriol Hyg I Orig B, 179: 112–124.

    CAS  Google Scholar 

  69. Konuma H, Suzuki A, Kurata H (1982) Improved Stomacher 400 bag applicable to the spiral plate system for counting bacteria. Appl Environ Microbiol, 44: 765–769.

    CAS  Google Scholar 

  70. Lee AC, Goepfert JM (1975) Influence of selected solutes on thermally induced death and injury of Salmonella typhimurium. J Milk Food Technol, 38: 195–200.

    Google Scholar 

  71. Lowder M, Unge A, Maraha N, Jansson JK, Swiggett J, Oliver JD (2000) Effect of starvation and the viable but-nonculturable state on green fluorescent protein (GFP) fluorescence in GFP-tagged Pseudomonas fluorescens A506. Appl Environ Microbiol, 66: 3160–3165.

    Article  CAS  Google Scholar 

  72. P. Murray, Baron E, Jorgensen J, Pfaller M, Yolken M (eds) (2003) Manual of Clinical Microbiology (8th ed). ASM Press, Washington, DC.

    Google Scholar 

  73. Marshall RT (ed) (1993) Standard Methods for the Examination of Dairy Products (16th ed). American Public Health Association, Washington, DC.

    Google Scholar 

  74. Martin SE, Flowers RS, Ordal ZJ (1976) Catalase: Its effect on microbial enumeration. Appl Environ Microbiol, 32: 731–734.

    CAS  Google Scholar 

  75. Matner RR, Fox TL, McIver DE, Curiale MS (1990) Efficacy of Petrifilm™ count plates for E. coli and coliform enumeration. J Food Protect, 53: 145–150.

    Google Scholar 

  76. Maxcy RB (1973) Condition of coliform organisms influencing recovery of subcultures on selective media. J Milk Food Technol, 36: 414–416.

    Google Scholar 

  77. McDonald LC, Hackney CR, Ray B (1983) Enhanced recovery of injured Escherichia coli by compounds that degrade hydrogen peroxide or block its formation. Appl Environ Microbiol, 45: 360–365.

    CAS  Google Scholar 

  78. McGovern VP, Oliver JD (1995) Induction of cold-responsive proteins in Vibrio vulnificus. J Bacteriol, 177: 4131–4133.

    CAS  Google Scholar 

  79. ICMSF (1982) Microorganisms in Foods — Their Significance and Methods of Enumeration, vol. 1, (2nd ed). University of Toronto Press, Toronto.

    Google Scholar 

  80. ICMSF (1986) Microorganisms in Foods — Sampling for Microbiological Analysis: Principles and Specific Applications, vol. 2, (2nd ed). University of Toronto Press, Toronto.

    Google Scholar 

  81. Moats WA, Dabbah R, Edwards VM (1971) Survival of Salmonella anatum heated in various media. Appl Microbiol, 21: 476–481.

    CAS  Google Scholar 

  82. Mossel DAA, Kampelmacher EH, Van Noorle Jansen LM (1966) Verification of adequate sanitation of wooden surfaces used in meat and poultry processing. Zent Bakteriol Parasiten Infek Hyg Abt I, 201: 91–104.

    Google Scholar 

  83. Neal ND, Walker HW (1977) Recovery of bacterial endospores from a metal surface after treatment with hydrogen peroxide. J Food Sci, 42: 1600–1602.

    Article  CAS  Google Scholar 

  84. Nelson CL, Fox TL, Busta FF (1984) Evaluation of dry medium film (Petrifilm VRB) for coliform enumeration. J Food Protect, 47: 520–525.

    Google Scholar 

  85. Nelson FE (1943) Factors which influence the growth of heat-treated bacteria. I. A comparison of four agar media. J Bacteriol, 45: 395–403.

    CAS  Google Scholar 

  86. Nilsson L, Oliver JD, Kjelleberg S (1991) Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J Bacteriol, 173: 5054–5059.

    CAS  Google Scholar 

  87. Niskanen A, Pohja MS (1977) Comparative studies on the sampling and investigation of microbial contamination of surfaces by the contact plate and swab methods. J Appl Bacteriol, 42: 53–63.

    CAS  Google Scholar 

  88. Nortje GL, Swanepoel E, Naude RT, Holzapfel WH, Steyn PL (1982) Evaluation of three carcass surface microbial sampling techniques. J Food Protect, 45: 1016–1017, 1021.

    Google Scholar 

  89. AOAC (1995) Official Methods of Analysis, vol. I, (16th ed). Association of Official Analytical Chemists, Arlington, VA.

    Google Scholar 

  90. Ølgaard K (1977) Determination of relative bacterial levels on carcasses and meats — A new quick method. J Appl Bacteriol, 42: 321–329.

    Google Scholar 

  91. Oliver JD, Bockian R (1995) In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. Appl Environ Microbiol, 61: 2620–2623.

    CAS  Google Scholar 

  92. Oliver JD, Hite F, McDougald D, Andon NL, Simpson LM (1995) Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment. Appl Environ Microbiol, 61: 2624–2630.

    CAS  Google Scholar 

  93. Patterson JT (1971) Microbiological assessment of surfaces. J Food Technol, 6: 63–72.

    Article  Google Scholar 

  94. Peeler JT, Gilchrist JE, Donnelly CB, Campbell JE (1977) A collaborative study of the spiral plate method for examining milk samples. J Food Protect, 40: 462–464.

    Google Scholar 

  95. Pettipher GL (1983) The Direct Epifluorescent Filter Technique for the Rapid Enumeration of Microorganisms. Wiley, New York.

    Google Scholar 

  96. Pettipher GL, Fulford RJ, Mabbitt LA (1983) Collaborative trial of the direct epifluorescent filter technique (DEFT), a rapid method for counting bacteria in milk. J Appl Bacteriol, 54: 177–182.

    CAS  Google Scholar 

  97. Pettipher GL, Mansell R, McKinnon CH, Cousins CM (1980) Rapid membrane filtration-epifluorescent microscopy technique for direct enumeration of bacteria in raw milk. Appl Environ Microbiol, 39: 423–429.

    CAS  Google Scholar 

  98. Pettipher GL, Rodrigues UM (1981) Rapid enumeration of bacteria in heat-treated milk and milk products using a membrane filtration-epifluorescent microscopy technique. J Appl Bacteriol, 50: 157–166.

    Google Scholar 

  99. Pettipher GL, Rodrigues UM (1982) Rapid enumeration of microorganisms in foods by the direct epifluorescent filter technique. Appl Environ Microbiol, 44: 809–813.

    CAS  Google Scholar 

  100. Pettipher GL, Williams RA, Gutteridge CS (1985) An evaluation of possible alternative methods to the Howard mould count. Lett Appl Microbiol, 1: 49–51.

    Article  Google Scholar 

  101. Postgate JR, Hunter JR (1963) Metabolic injury in frozen bacteria. J Appl Bacteriol, 26: 405–414.

    Google Scholar 

  102. Puleo JR, Favero MS, Petersen NJ (1967) Use of ultrasonic energy in assessing microbial contamination on surfaces. Appl Microbiol, 15: 1345–1351.

    CAS  Google Scholar 

  103. Ramaiah N, Ravel J, Straube WL, Hill RT, Colwell RR (2002) Entry of Vibrio harveyi and Vibrio fischeri into the viable but nonculturable state. J Appl Microbiol, 93: 108–116.

    Article  CAS  Google Scholar 

  104. Rao DN, Murthy VS (1986) Rapid dye reduction tests for the determination of microbiological quality of meat. J Food Technol, 21: 151–157.

    Article  Google Scholar 

  105. Reyniers JA (1935) Mechanising the viable count. J Pathol Bacteriol, 40: 437–454.

    Article  Google Scholar 

  106. Rodrigues UM, Kroll RG (1989) Microcolony epifluorescence microscopy for selective enumeration of injured bacteria in frozen and heat-treated foods. Appl Environ Microbiol, 55: 778–787.

    CAS  Google Scholar 

  107. Rodrigues UM, Kroll RG (1988) Rapid selective enumeration of bacteria in foods using a microcolony epifluorescence microscopy technique. J Appl Bacteriol, 64: 65–78.

    CAS  Google Scholar 

  108. Rodrigues UM, Kroll RG (1985) The direct epifluorescent filter technique (DEFT): Increased selectivity, sensitivity and rapidity. J Appl Bacteriol, 59: 493–499.

    CAS  Google Scholar 

  109. Rollins DM, Colwell RR (1986) Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Environ Microbiol, 52: 531–538.

    CAS  Google Scholar 

  110. Rowley DB, Firstenberg-Eden R, Shattuck GE (1983) Radiation-injured Clostridium botulinum type E spores: Outgrowth and repair. J Food Sci, 48: 1829–1831, 1848.

    Article  Google Scholar 

  111. Saffle RL, May KN, Hamid HA, Irby JD (1961) Comparing three rapid methods of detecting spoilage in meat. Food Technol, 15: 465–467.

    Google Scholar 

  112. Scott E, Bloomfield SF, Barlow CG (1984) A comparison of contact plate and calcium alginate swab techniques of environmental surfaces. J Appl Bacteriol, 56: 317–320.

    CAS  Google Scholar 

  113. Sharpe AN, Harshman GC (1976) Recovery of Clostridium perfringens, Staphylococcus aureus, and molds from foods by the Stomacher: Effect of fat content, surfactant concentration, and blending time. Can Inst Food Sci Technol J, 9: 30–34.

    Google Scholar 

  114. Sharpe AN, Jackson AK (1972) Stomaching:Anewconcept in bacteriological sample preparation. Appl Microbiol, 24: 175–178.

    CAS  Google Scholar 

  115. Sharpe AN, Kilsby DC (1971) Arapid, inexpensive bacterial count technique using agar droplets. J Appl Bacteriol, 34: 435–440.

    CAS  Google Scholar 

  116. Sharpe AN, Diotte MP, Dudas I, Malcolm S, Peterkin PI (1983) Colony counting on hydrophobic grid-membrane filters. Can J Microbiol, 29: 797–802.

    Article  CAS  Google Scholar 

  117. Sharpe AN, Peterkin PI, Malik N (1979) Improved detection of coliforms and Escherichia coli in foods by a membrane filter method. Appl Environ Microbiol, 38: 431–435.

    CAS  Google Scholar 

  118. Sharpe AN, Michaud GL (1974) Hydrophobic grid-membrane filters: New approach to microbiological enumeration. Appl Microbiol, 28: 223–225.

    CAS  Google Scholar 

  119. Sharpe AN, Michaud GL (1975) Enumeration of high numbers of bacteria using hydrophobic grid membrane filters. Appl Microbiol, 30: 519–524.

    CAS  Google Scholar 

  120. Shaw BG, Harding CD, Hudson WH, Farr L (1987) Rapid estimation of microbial numbers on meat and poultry by direct epifluorescent filter technique. J Food Protect, 50: 652–657.

    Google Scholar 

  121. Silliker JH, Gabis DA, May A (1979) ICMSF methods studies. XI. Collaborative/comparative studies on determination of coliforms using the most probable number procedure. J Food Protect, 42: 638–644.

    Google Scholar 

  122. Smith JL, Benedict RC, Haas M, Palumbo SA (1983) Heat injury in Staphylococcus aureus 196E: Protection by metabolizable and non-metabolizable sugars and polyols. Appl Environ Microbiol, 46: 1417–1419.

    CAS  Google Scholar 

  123. Speck ML, Ray B, Read RB Jr (1975) Repair and enumeration of injured coliforms by a plating procedure. Appl Microbiol, 29: 549–550.

    CAS  Google Scholar 

  124. Szabo RA, Todd ECD, Jean A (1986) Method to isolate Escherichia coli O157:H7 from food. J Food Protect, 49: 768–772.

    Google Scholar 

  125. ten Cate L (1963) An easy and rapid bacteriological control method in meat processing industries using agar sausage techniques in Rilsan artificial casing. Fleischwarts, 15: 483–486.

    Google Scholar 

  126. Todd ECD, Szabo RA, Peterkin P, Sharpe AN, Parrington L, Bundle D, Gidney MAJ, Perry MB (1988) Rapid hydrophobic grid membrane filter-enzyme-labeled antibody procedure for identification and enumeration of Escherichia coli O157 in foods. Appl Environ Microbiol, 54: 2526–2540.

    Google Scholar 

  127. Tomlins RI, Pierson MD, Ordal ZJ (1971) Effect of thermal injury on the TCA cycle enzymes of Staphylococcus aureus MF 31 and Salmonella Typhimurium 7136. Can J Microbiol, 17: 759–765.

    Article  CAS  Google Scholar 

  128. Trotman RE (1971) The automatic spreading of bacterial culture over a solid agar plate. J Appl Bacteriol, 34: 615–616.

    CAS  Google Scholar 

  129. Tuttlebee JW (1975) The Stomacher — Its use for homogenization in food microbiology. J Food Technol, 10: 113–122.

    Article  Google Scholar 

  130. Wang G, Doyle MP (1998) Survival of enterohemorrhagic Escherichia coli O157:H7 in water. J Food Protect, 61: 662–667.

    CAS  Google Scholar 

  131. Woodward RL (1957) How probable is the most probable number? J Am Water Works Assoc, 49: 1060–1068.

    Google Scholar 

  132. Zayaitz AEK, Ledford RA (1985) Characteristics of acid-injury and recovery of Staphylococcus aureus in a model system. J Food Protect, 48: 616–620.

    CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

(2009). Tecniche di coltura, di microscopia e di campionamento. In: Pulvirenti, A. (eds) Microbiologia degli alimenti. Food. Springer, Milano. https://doi.org/10.1007/978-88-470-0786-4_10

Download citation

Publish with us

Policies and ethics