Phenomenology of Incompleteness: From Formal Deductions to Mathematics and Physics

  • Francis Bailly
  • Giuseppe Longo


This paper is divided into two parts. The first proposes a philosophical frame and it “uses” for this a recent book on a phenomenological approach to the foundations of mathematics. Gödel’s 1931 theorem and his subsequent philosophical reflections have a major role in discussing this perspective and we will develop our views along the lines of the book (and further on). The first part will also hint to the connections with some results in Mathematical physics, in particular with Poincaré’s unpredictability (three-body) theorem, as an opening towards the rest of the paper. As a matter of fact, the second part deals with the “incompleteness” phenomenon in Quantum physics, a wording due to Einstein in a famous joint paper of 1935, still now an issue under discussion for many. Similarities and differences w.r. to the logical notion of incompleteness will be highlighted. A constructivist approach to knowledge, both in mathematics and in physics, underlies our attempted “unified” understanding of these apparently unrelated theoretical issues.


Mathematical Object Hide Variable Quantum Object Peano Arithmetic Conceptual Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Aspect, P. Grangier and G. Roger: Experimental Realization of the Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev. Let. 9 (1982) p 91CrossRefGoogle Scholar
  2. 2.
    F. Bailly and G. Longo: Mathématiques et sciences de la nature. La singularité physique du vivant (Hermann, Paris 2006). (English introduction, downloadable)Google Scholar
  3. 3.
    F. Bailly and G. Longo: Randomness and Determination in the interplay between the Continuum and the Discrete. Mathematical Structures in Computer Science 17, 2 (2007)CrossRefGoogle Scholar
  4. 4.
    H. Barreau and J. Harthong (eds): La mathmatique non standard (Ed. CNRS 1989)Google Scholar
  5. 5.
    J. Barrow-Green: Poincaré and the three body Problem. History of Mathematics XI (AMS 1997)Google Scholar
  6. 6.
    J. L. Bell: A Primer of Infinitesimal Analysis (Cambridge Univ. Press, Cambridge 1998)Google Scholar
  7. 7.
    J. S. Bell: On the Einstein-Podolsky-Rosen Paradox. Physics 1 (1964) p 195Google Scholar
  8. 8.
    J. Binney, N. J. Dowrick, A. J. Fisher and M. E. J. Newman: The Theory of Critical Phenomena: An Introduction to the Renormalization Group (Oxford Univ. Press, Oxford 1992)Google Scholar
  9. 9.
    M. Bitbol: L’aveuglante proximité du réel (Flammarion, Paris 2000)Google Scholar
  10. 10.
    D. Bohm: The Paradox of Einstein, Rosen and Podolsky. Quantum Th. (1951) p 611Google Scholar
  11. 11.
    V. Brattka and G. Presser: Computability on subsets of metric spaces. Theoretical Computer Science, 305 (2003)Google Scholar
  12. 12.
    V. Brattka and K. Weihrauch: Computability on subsets of Euclidean space I: Closed and compact subsets. Theoretical Computer Science 219 (1999)Google Scholar
  13. 13.
    C. Calude: Information and Randomness: An Algorithmic Perspective (Springer, Berlin 2002)Google Scholar
  14. 14.
    C. Calude and M. Stay: From Heisenberg to Gödel via Chaitin. International Journal of Theoretical Physics 44,7 (2005) pp 1053–1065CrossRefGoogle Scholar
  15. 15.
    P. Collins: Continuity and computability of reachable sets. Theoretical Computer Science 341 (2005)Google Scholar
  16. 16.
    A. Connes: A. Non-commutative Geometry (Academic Press, New York 1994)Google Scholar
  17. 17.
    S. Dehaene: The Number Sens (Oxford Univ. Press, Oxford 1997)Google Scholar
  18. 18.
    R. L. Devaney: An introduction to Chaotic Dynamical Systems (Addison-Wesley, Reading 1989)Google Scholar
  19. 19.
    F. Diacu: Singularities of the N-Body Problem (Publications CRM, Montreal 1992)Google Scholar
  20. 20.
    A. Einstein, B. Podolsky and N. Rosen: Can Quantum-Mechanical Description of Physical Reality be Considered complete? Phys. Rev. 41 (1935) p 777CrossRefGoogle Scholar
  21. 21.
    B. van Fraassen: Lois et symetries (Vrin, Paris 1994)Google Scholar
  22. 22.
    G. Frege: The Foundations of Arithmetic (1884) (Evanston 1980)Google Scholar
  23. 23.
    K. Gödel: Remark About the Relationship between Relativity Theory and Idealistic Philosophy. In: Albert Einstein: Philosopher-Scientist, ed by P. A. Schilpp (Open Court, LaSalle Ill.) pp 557–562. Reprinted with corrections and additions in Collected Works, ed by S. Feferman et. al., Vol. 2 (Oxford University Press, Oxford 1990)Google Scholar
  24. 24.
    L. Harrington et al. (eds): H. Friedman’s Research on the Foundations of Mathematics (North-Holland, Amsterdam 1985)Google Scholar
  25. 25.
    D. Hilbert: Les fondements de la géométrie (1899) (Dunod, 1971)Google Scholar
  26. 26.
    M. Hoyrup: Dynamical Systems: Stability and Simulability. Mathematical Structures in Computer Science 17,2 (2007)Google Scholar
  27. 27.
    M. Hoyrup, A. Kolcak and G. Longo: Computability and the Morphological Complexity of some dynamics on Continuous Domains. Invited survey TCS (2008) To appearGoogle Scholar
  28. 28.
    T. Jech: Set Theory (Springer, Berlin 1997)Google Scholar
  29. 29.
    H. J. Jensen: Self-Organized Criticality, Emergent Complex Behavior in Physical and Biological Systems (Cambridge Lectures in Physics 1998)Google Scholar
  30. 30.
    J. Laskar: Large scale chaos in the Solar System. Astron. Astrophysics 287, L9–L12, (1994)Google Scholar
  31. 31.
    G. Longo: Laplace (A note on incompleteness). An item of J-Y. Girard’s Logic Dictionnary, at the end of “Locus Solum”, MSCS, vol. 11, n.3, (Cambridge Univ. Press, Cambridge 2001)Google Scholar
  32. 32.
    G. Longo: Reflections on Incompleteness or On the proofs of some formally unprovable propositions and Prototype Proofs in Type Theory (invited Lecture: Types for Proofs and Programs Durham UK, Dec. 2000). In: Lecture Notes in Computer Science 2277 ed by Callaghan et al. (Springer, Berlin 2002) pp 160–180Google Scholar
  33. 33.
    G. Longo: The Cognitive Foundations of Mathematics: human gestures in proofs and mathematical incompleteness of formalisms. In: Images and Reasoning, ed by M. Okada et al. (Keio University Press, Tokio 2005)Google Scholar
  34. 34.
    G. Longo: Laplace, Turing and the “imitation game” impossible geometry: randomness, determinism and programs in Turing’s test. In: The Turing Test Sourcebook, ed by R. Epstein, G. Roberts and G. Beber (Kluwer, Dordrecht 2007)Google Scholar
  35. 35.
    G. Longo and P. E. Tendero: The causal incompleteness of Programming Theory in Molecular biology, Foundations of Science (to apprear). French version in: Evolution des concepts fondateurs de la biologie du XXIe siècle, ed by Miquel (DeBoeck, Paris 2007)Google Scholar
  36. 36.
    G. Longo and T. Paul: The Mathematics of Computing between Logic and Physics. In: Computability in Context: Computation and Logic in the Real World, ed by Cooper and Sorbi (Imperial College Press, World Scientific 2008) To appearGoogle Scholar
  37. 37.
    P. Martin-Löf: The definition of random sequences. Information and Control 9 (1966) pp. 602–619CrossRefGoogle Scholar
  38. 38.
    L. Nottale: La relativité dans tous ses états (Hachette, Paris 1999)Google Scholar
  39. 39.
    J. Paris and L. Harrington: A mathematical incompleteness in Peano Arithmetic. In: Handbook of Mathematical Logic, ed by J. Barwise (North-Holland, Amsterdam 1978)Google Scholar
  40. 40.
    F. Patras: La penseé mathématique contemporaine (PUF 2001)Google Scholar
  41. 41.
    K. Petersen: Ergodic Theory (Cambridge Univ. Press, Cambridge 1990)Google Scholar
  42. 42.
    J-L. Petit: Solipsisme et Intersubjectivité (Cerf 1996)Google Scholar
  43. 43.
    S. Y. Pilyugin: Shadowing in dynamical systems (Springer, Berlin 1999)Google Scholar
  44. 44.
    M. B. Pour-El and J. I. Richards: Computability in analysis and physics. Perspectives in mathematical logic (Springer, Berlin 1989)Google Scholar
  45. 45.
    J-M. Salanskis: L’hermneutique formelle (Ed. CNRS 1991)Google Scholar
  46. 46.
    J. Tappenden: Geometry and generality in Frege’s philosophy of Arithmetic. Synthese 102,3 (1995)Google Scholar
  47. 47.
    R. Tieszen: Phenomenology, Logic, and the Philosophy of Mathematics (Cambridge Univ. Press, Cambridge 2005)Google Scholar
  48. 48.
    H. Weyl: Philosophy of Mathematics and of Natural Sciences (Princeton University Press, Princeton 1949)Google Scholar
  49. 49.
    K. Weihrauch: Computable Analysis. In: Texts in Theoretical Computer Science (Springer, Berlin 2000)Google Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Francis Bailly
    • 1
  • Giuseppe Longo
    • 1
  1. 1.Physique, CNRS, Meudon & LIENS, CNRS-ENS et CREA;ParisFrance

Personalised recommendations