Proof as a Path of Light

  • Rossella Lupacchini


According to certain medieval philosophers, perspective is a “demonstrative science” as it reveals the connection between sensible and intelligible visions by means of the mathematical rules of geometric optics. Carrying over concepts and methods of the medieval perspectiva naturalis into a plane surface, the Renaissance perspectiva artificialis unfurls a new “pictorial” space. To appreciate the impact of quantum theory on determinism and computation issues this paper will adopt a “perspectival” approach: the architecture of the theory, first captured in the ‘real’ three dimensional space, will lead us into a new ‘imaginary’ space. Here the bilateral symmetry coupling any possibility with its negation, sized by “complex probability amplitudes”, may dissolve the ‘ignorance’ of classical probabilities as well as the ‘blindness’ of finite mechanical procedures.


Quantum Theory Pure State Turing Machine Angular Separation English Trans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. B. Alberti: De Pictura (1435), Basilea 1540. Critical edition by L. Mallé (Florence 1950)Google Scholar
  2. 2.
    Al-Kindi: De radiis (Arabic text IX century; Latin trans. XII century). French trans. De radiis (Editions Allia, Paris 2003)Google Scholar
  3. 3.
    R. Bacon: The Opus Majus, ed by J. H. Bridges (Minerva, Frankfurt 1964)Google Scholar
  4. 4.
    F. Bailly and G. Longo: Randomness and Determination in the interplay between the Continuum and the Discrete. Mathematical Structures in Computer Science 17,2 (2007)Google Scholar
  5. 5.
    J. S. Bell: Subject and Object. In: The Physicist’s Conception of Nature (Reidel, Dordrect 1973). Reprinted in Bell [6]Google Scholar
  6. 6.
    J. S. Bell: Speakable and Unspeakable in Quantum Mechanics (Cambridge Univ. Press, Cambridge 1993)Google Scholar
  7. 7.
    E. Cassirer: Substanzbegriff und Funktionsbegriff, Berlin 1910. English trans. Substance and Function (Open Court, Chicago-London 1923)Google Scholar
  8. 8.
    E. Cassirer: Determinismus und Indeterminismus in der modernen Physik (Erlanders Boktryckeri Aktiebolag, Göteborg 1937)Google Scholar
  9. 9.
    C. Calude and M. Stay: From Heisenberg to Gödel via Chaitin. International Journal of Theoretical Physics 44,7 (2005)Google Scholar
  10. 10.
    C. Cellucci: Le ragioni della logica (Laterza, Bari 1998)Google Scholar
  11. 11.
    C. Cellucci: Mathematical discourse vs mathematical intuition. In: Mathematical reasoning and heuristics, ed by C. Cellucci and D. Gillies (College Publications, London 2005)Google Scholar
  12. 12.
    P. Dirac: The Principles of Quantum Mechanics (Clarendon, Oxford 1930)Google Scholar
  13. 13.
    R. Descartes: Oeuvres, ed by C. Adam and P. Tannery (Vrin, Paris 1996)Google Scholar
  14. 14.
    D. Deutsch: Quantum theory of probability and decisions. Proceedings of the Royal Society of London A455 (1999)Google Scholar
  15. 15.
    J. Earman: A Primer on Determinism (Reidel, Dordrecht 1986)Google Scholar
  16. 16.
    A. Ekert: Complex und unpredictable Cardano (e-print arXiv:0806.0485v1)Google Scholar
  17. 17.
    P. Facchi and S. Pascazio: Quantum Zeno and inverse quantum Zeno effects. In: Progress in Optics 42, ed by E. Wolf (Elsevier Science BV 2001)Google Scholar
  18. 18.
    D. Flament: Histoire des nombres complexes (CNRS Ed., Paris 2003)Google Scholar
  19. 19.
    G. Fano: Mathematical Methods of Quantum Mechanics (McGraw Hill, New York 1971)Google Scholar
  20. 20.
    S. Feferman: In the Light of Logic (Oxford Univ. Press, Oxford 1998)Google Scholar
  21. 21.
    R. P. Feynman, R. B. Leighton and M. Sand: The Feynman Lectures on Physics, vol. III (Addison-Wesley, Reading 1970)Google Scholar
  22. 22.
    R. Gandy: Church’s thesis and principles for mechanisms. In: The Kleene Symposium, ed by J. Barwise, H. J. Keisler and K. Kunen (North-Holland, Amsterdam 1980)Google Scholar
  23. 23.
    K. Gödel: Some basic theorems on the foundations of mathematics and their implications (Gibbs Lecture 1951). In: Collected Works III (Oxford Univ. Press, Oxford 1995)Google Scholar
  24. 24.
    R. Grosseteste: Commentarius in Posteriorum analyticorum libros, ed by P. Rossi (Olschki, Florence 1981)Google Scholar
  25. 25.
    R. Grosseteste: Metafisica della luce. Opuscoli filosofici, ed by P. Rossi (Rusconi, Milan 1986)Google Scholar
  26. 26.
    J. S. Hadamard: Newton and the Infinitesimal Calculus. In: Newton Tercentenary Celebration of the Royal Society of London (Cambridge Univ. Press, Cambridge 1947)Google Scholar
  27. 27.
    D. Hilbert: Die Grundlagen der Mathematik (1927). English trans. The foundations of mathematics. In: From Frege to Gödel, a source book in mathematical logic, 1879-1931, ed by J. van Heijenoort (Harvard Univ. Press, Cambridge 1967)Google Scholar
  28. 28.
    R. I. G. Hughes: The Structure and Interpretation of Quantum Mechanics (Harvard Univ. Press, Cambridge Mass. 1989)Google Scholar
  29. 29.
    M. Kemp: The Science of Art (Yale Univ. Press, New Haven 1990)Google Scholar
  30. 30.
    M. Kemp: Leonardo (Oxford Univ. Press, Oxford 2004)Google Scholar
  31. 31.
    A. Koyré: La synthèse newtonienne. In: Archives Internationales d’Histoire des Sciences, 3 (1950); reprinted in Etudes newtoniennes (Gallimard, Paris 1968)Google Scholar
  32. 32.
    P. Kwiat, H. Weinfurter and A. Zeilinger: Scientific American Nov. (1996).Google Scholar
  33. 33.
    D. C. Lindberg: Roger Bacon and the origins of Perspectiva in the Middle Ages (critical edition and English translation of Bacon’s Perspectiva) (Clarendon, Oxford 1996)Google Scholar
  34. 34.
    G. Lolli: QED. Fenomenologia della dimostrazione (Bollati Boringhieri, Turin 2005)Google Scholar
  35. 35.
    R. Longhi: Piero della Francesca (Rome 1927). Reprinted in: Opere complete (Sansoni, Florence 1963)Google Scholar
  36. 36.
    G. Longo: Laplace, Turing and the “imitation game” impossible geometry: randomness, determinism and programs in Turing’s test. In: The Turing Test Sourcebook, ed by R. Epstein, G. Roberts and G. Beber (Kluwer, Dordrecht 2007)Google Scholar
  37. 37.
    R. Merli, G. F. Missiroli and G. Pozzi: On the statistical aspect of electron interference phenomena. American Journal of Physics 44 (1985)Google Scholar
  38. 38.
    E. Panofsky: Die Perspektive als “symbolische Form” (B. G. Teubner, Leipzig-Berlin 1927). English trans. Perspective as Symbolic Form (Zone Books, New York 1997)Google Scholar
  39. 39.
    R. Penrose: Shadows of the Mind (Oxford Univ. Press, Oxford 1994)Google Scholar
  40. 40.
    Piero della Francesca: De Prospectiva pingendi (1474). Critical edition by G. N. Fasola (Florence 1942)Google Scholar
  41. 41.
    V. Scarani: Initiation à la physique quantique (Vuibert, Paris 2003) English trans. Quantum Physics. A First Encounter (Oxford Univ. Press, Oxford 2006)Google Scholar
  42. 42.
    W. Sieg: Relative consistency and accessible domains. Synthese 84 (1990)Google Scholar
  43. 43.
    W. Sieg: Hilbert’s proof theory. In: Handbook of the History of Logic Volume 5: Logic from Russell to Church ed by D. M. Gabbay and J. Woods (Elsevier 2008)Google Scholar
  44. 44.
    A. M. Turing: On computable numbers with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Serie 2, 43 (1937). Reprinted in: The Essential Turing, ed by B. J. Copeland (Clarendon, Oxford 2004)Google Scholar
  45. 45.
    B. C. van Fraassen: Quantum Mechanics (Clarendon, Oxford 1991)CrossRefGoogle Scholar
  46. 46.
    J. von Neumann: Mathematische Grundlagen der Quantenmechanik, Springer, Berlin 1932. English trans. The Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton 1955)Google Scholar
  47. 47.
    H. Weyl: Gruppentheorie und Quantenmechanik (Methuen and Company, Ltd. 1931). English trans. The Theory of Groups and Quantum Mechanics (Dover, New York 1950)Google Scholar
  48. 48.
    H. Weyl: Philosophy of Mathematics and Natural Sciences (Princeton Univ. Press, Princeton 1949)Google Scholar
  49. 49.
    H. Weyl: Symmetry (Princeton Univ. Press, Princeton 1952)Google Scholar
  50. 50.
    J. A. Wheeler: Bits, quanta, meaning. In: Problems in Theoretical Physics, ed by A. Giovannini, F. Mancini and M. Marinaro (Salerno 1984)Google Scholar
  51. 51.
    J. A. Wheeler and W. H. Zureck (eds.): Quantum Theory and Measurement (Princeton Univ. Press, Princeton 1983)Google Scholar
  52. 52.
    W. K. Wootters: Statistical distance and Hilbert space. Physical Review D, vol. 23, n. 2 (1981)Google Scholar
  53. 53.
    W. K. Wootters: Local accessibility of quantum states. In: Complexity, Entropy, and the Physics of Information, ed by W. H. Zurek (Addison-Wesley, Redwood City CA 1990)Google Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Rossella Lupacchini
    • 1
  1. 1.Dipartimento di FilosofiaUniversit`a di BolognaBolognaItaly

Personalised recommendations