Proofs instead of Meaning Explanations: Understanding Classical vs Intuitionistic Mathematics from the Outside

  • Dag Westerstahl


The conflict between classical and intuitionistic mathematics - henceforth, the C- I conflict — has been discussed at length and in depth by a number of famous scholars. Why an outside perspective? Is such a perspective interesting, or even possible?


Semantic Theory Classical Logic Mutual Understanding Intuitionistic Logic Logical Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Berardi and S. Valentini: Krivine’s intuitionistic proof of classical completeness (for countable languages). Annals of Pure and Applied Logic 129 (2004) pp 93–106CrossRefGoogle Scholar
  2. 2.
    E. Bishop: Foundations of Constructive Analysis (McGraw-Hill, New York 1967)Google Scholar
  3. 3.
    D. S. Bridges: Constructive truth in practice. In: Truth in Mathematics, ed by H. G. Dales and G. Oliveri (Clarendon Press, Oxford 1998) pp 53–69Google Scholar
  4. 4.
    M. Dummett: The philosophical basis of intuitionistic logic. Reprinted in: Truth and other Enigmas (BLA, London 1978) pp 215–247Google Scholar
  5. 5.
    M. Dummett: Elements of Intuitionism (Oxford University Press, Oxford 1977) (Revised and reprinted in 2000)Google Scholar
  6. 6.
    M. Dummett: The Logical Basis of Metaphysics (Harvard University Press, Harvard 1991)Google Scholar
  7. 7.
    G. Hellman: Never say “Never”! On the communication problem between intuitionism and classicism. Philosophical Topics 17 (1989) pp 47–67Google Scholar
  8. 8.
    J.-L. Krivine: Une preuve formelle et intuitionistique du Theoreme de Completude de la Logique Classique. Bulletin of Symbolic Logic 2 (1996) pp 405–21CrossRefGoogle Scholar
  9. 9.
    J. Lipton: Kripke semantics for dependent type theory and realizability interpretations. In: Constructivity in Computer Science, LNCS 613 (Springer, Berlin 1992) pp 22–32CrossRefGoogle Scholar
  10. 10.
    J. MacFarlane: Making sense of relative truth. Proceedings of the Aristotelian Society 105 (2005) pp 321–39CrossRefGoogle Scholar
  11. 11.
    P. Martin-Löf: Notes on Constructive Mathematics (Almquist & Wiksell, Stockholm 1970)Google Scholar
  12. 12.
    P. Martin-Löf: Intuitionistic Type Theory (Notes by G. Sambin) (Bibliopolis, Napoli 1984)Google Scholar
  13. 13.
    D. C. McCarty: Undecidability and intuitionistic incompleteness. Journal of Philosophical Logic 25 (1996) pp 559–565CrossRefGoogle Scholar
  14. 14.
    D. Prawitz: Meaning and proofs: on the conflict between classical and intuitionistic logic. Theoria 43 (1977) pp 2–40CrossRefGoogle Scholar
  15. 15.
    F. Richman: Intuitionism as generalization. Philosophia Mathematica 5 (1990) pp 124–128Google Scholar
  16. 16.
    G. Sambin: Some points in formal topology. Theoretical Computer Science 305 (2003) pp 347–408CrossRefGoogle Scholar
  17. 17.
    A. Troelstra and D. van Dalen: Constructivism in Mathematics; An Introduction. Vols. I–II (North-Holland, Amsterdam 1988)Google Scholar
  18. 18.
    D. Westerstahl: Perspectives on the dispute between intuitionistic and classical mathematics. In: Ursus Philosophicus, Philosophical Communications, web series no. 32, Gothenburg University (2004)Google Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Dag Westerstahl
    • 1
  1. 1.Filosofiska institutionenGöteborgs UniversitetGöteborgSweden

Personalised recommendations